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SUMMARY 
Leveraging occupant feedback in smart building control and management has been shown to 

enhance indoor environmental quality (IEQ) and building energy efficiency. Despite its potential, 

research on the collection and translation of subjective feedback into actionable key performance 

indicators remains limited. This study conducts a scoping review of survey-based approaches for 

evaluating thermal quality and indoor air quality, their computation into Subjective Key Performance 

Indicators (SKPIs), and their subsequent applications. We found considerable inconsistencies in 

survey design, survey deployment, and SKPI computation approaches, even for the same application 

purpose. This highlights the absence of a standardized approach for developing SKPIs. To address 

this gap, a methodological framework is proposed to systematize SKPI development in four steps: 1) 

Determining the application goals to guide SKPI development; 2) Designing surveys considering IEQ 

factors, survey items, question inquiries, and scale formats; 3) Deploying surveys considering 

temporal and spatial resolutions, as well as user interface design; 4) Computing SKPIs by defining 

appropriate temporal and spatial granularities alongside statistical measures. Furthermore, this 

framework is demonstrated for a use-case on fault diagnosis in air handling units. Lastly, the 

challenges associated with the SKPI development and future directions are discussed, emphasizing 

the need to advance validated and robust scales and explore applications in fault detection and 

diagnosis, and building energy flexibility. This report highlights the untapped potential of SKPIs and 

establishes a methodological foundation for their development and application in smart building 

management and controls. 
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1 INTRODUCTION 

Buildings contribute to approximately 30% of global final energy consumption [1], and 26% of global 

energy-related CO2 emissions, of which 50% is attributed to heating, ventilation, and air conditioning 

(HVAC) systems [2]. Despite this substantial energy usage, a field study of 60 office buildings in the 

US revealed that about 40% of occupants remain dissatisfied with the thermal environment [3]. 

Faults in HVAC are one of the major causes of energy waste and comfort deterioration [4]. A viable 

way to save energy and concurrently improve occupant comfort is to implement smart building 

management and control techniques [5,6]. To quantify, monitor, and optimize building energy 

management and control, developing and implementing effective Key Performance Indicators (KPIs) 

is crucial. Consequently, KPIs have attracted significant interest from researchers [7–9]. Traditional 

KPIs mostly focus on energy efficiency [10], which can be implemented at various hierarchical levels 

within buildings, including the whole-building level, the system/service level, and the 

component/equipment level [11]. For instance, the Energy Efficiency Index (EEI) is a widely used KPI 

for monitoring building energy consumption at the building level [9,12]. However, these traditional 

energy-related KPIs often overlook the impact of various factors, particularly factors related to the 

occupants [13].  

Occupants, who spend over 90% of their time indoors [14], are the primary beneficiaries of building 

services in both residential and commercial buildingsClick or tap here to enter text.. Research 

indicates that occupant behavior can significantly impact building operation and indoor 

environmental conditions [15–19]. Conversely, Indoor Environmental Quality (IEQ) can also affect 

occupants' comfort, health, and performance [20]. To quantify this bi-directional impact, occupant-

centric KPIs have been developed and proposed. For example, the KPI Predicted Mean Vote (PMV) 

is often used to quantify the effects of the thermal environment on occupants’ comfort by integrating 

environmental variables including air temperature, air speed, mean radiant temperature, and 

relative humidity, alongside personal factors like clothing insulation and metabolic rate [21]. On the 

other hand, the KPI building energy use per capita accounts for the effects of occupancy variation 

on building energy consumption [22]. O’Brien et al. [23] provided guidance and outlined the required 

factors for developing occupant-centric KPIs. In a review paper by Li et al. [10] occupant-centric KPIs 

have been collected, developed, and classified into three categories: resource use, IEQ, and human-

building interactions. On the same topic, Sleiman et al. [24] further highlighted how stakeholders 

can use these occupant-centric KPIs to support decision-making and achieve performance 

objectives.  

The IEQ-related KPIs typically rely on objective data such as CO2, TVOC, formaldehyde, CO, and 

respirable particles, illuminance, noise levels, temperature, and relative humidity to predict the 

effects of IEQ on occupants' comfort and health through predictive models [25]. These objective data 

can be obtained by simulations or measurements. However, relying solely on objective data to 

quantify IEQ effects imposes several challenges: 1) Objective data from simulations often fail to 

replicate real-world conditions; 2) Objective data obtained by sensors is often not representative or 

may be erroneous [26]; 3) Accurately capturing spatial differences often requires deploying many 

sensors, which makes it costly, difficult to implement in buildings, and prone to more errors [27]; 4) 

The predictive models translating objective data to occupants’ perception and health may be 

inaccurateClick or tap here to enter text.; 5) IEQ-related KPIs are designed to evaluate indoor 

conditions for the “average” occupant, failing to address individual differences [30,31]. For example, 

the PMV model is not suitable for predicting Thermal Sensation (TS) in dynamic and non-uniform 

thermal conditions [28]. A study demonstrated 34% accuracy in predicting the mean TS in a real-life 

case [29].  

It is often overlooked that occupants themselves are also valuable sensors. For example, air 

temperature can be sensed by the skin’s thermoreceptors [32], and some air contaminants can be 

detected by the sense of smell [33]. Instead of relying solely on objective data, subjective data, i.e., 

occupant feedback, can directly reflect the impact of indoor environmental quality on occupants’ 

comfort and health. Importantly, incorporating occupant feedback into HVAC control systems has 

proven highly effective, enhancing Thermal Comfort (TC) and achieving energy savings of 20%–40% 

in office settings [34,35]. Moreover, a comprehensive review showed a median 22% energy savings 

and a 34% increase in occupant satisfaction rate when smart controls integrated occupant feedback 

[36].  
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Occupant feedback can be obtained through occupant surveys, focus group meetings, structured 

interviews, visual records, and walkthroughs. Among these, surveys are the most widely used 

approach in the built environment domain [37]. However, only one review study has focused on the 

survey interface [37], while other aspects of the subjective measurements, such as scale and 

question design, have not yet been thoroughly reviewed. Therefore, this study firstly reviews the 

survey methods of occupant feedback and the applications of SKPIs in the literature (Section 3). 

Among the five IEQ factors—Thermal Quality (TQ), indoor air quality (IAQ), lighting, acoustic quality, 

and water quality [38]—this paper focuses on TQ and IAQ. These two factors have a direct connection 

to HVAC systems, which are the largest energy consumers among building services systems [2]. 

Furthermore, numerous studies have demonstrated the significant effects of TQ and IAQ on occupant 

health, comfort, and work performance [39–41]. Next, we outline a methodological framework to 

develop SKPIs and discuss relevant details and factors that need to be considered in survey design, 

survey deployment, and KPI computations (Section 4). Thirdly, we demonstrate an SKPI application 

example for fault diagnosis of an air handling unit (AHU) based on the proposed methodology 

(Section 5). Finally, the challenges associated with the methodology and future directions are 

discussed (Section 6). 
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2 METHODOLOGY 

A literature search was conducted in April 2024 using Web of Science, Science Direct, and Google 

Scholar to identify papers published between 01/01/2015 and 30/03/2024. The search was 

directed to articles describing the subjective measures of TQ and IAQ perception. Any combination 

of the keywords from (1) and (2) below were used. 

For subjective measurements on TQ, the search used the following keywords: 

1)  "Thermal quality" OR "Thermal sensation" OR "Thermal comfort" OR "Thermal acceptance" 

TOR "Thermal preference" OR "Thermal Tolerance" OR "Thermal Satisfaction " OR "Thermal 

pleasure";  

       2) “Questionnaire” OR "Survey" OR “Occupant feedback” OR "Occupant perception" OR 

"Subjective response". 

For subjective measurements on IAQ, the following keywords were used: 

1) “Indoor Air Quality” OR” IAQ" OR “Indoor Environmental Quality” OR” IEQ" 

     AND the search terms under (2). 

This literature search identified 1961 papers for TQ and 1137 papers for IAQ after excluding the 

duplicates using Mendeley Version 2.129.0. Considering the large body of relevant literature, the 

purpose of this review (to identify the subjective measures in the research methods), and the 

heterogeneity of the subjective measures in the research method, we chose to conduct a scoping 

review as opposed to a systematic review for the sake of feasibility. When a topic hasn't been 

thoroughly examined before or is complicated or diverse in character, a scoping review of the 

literature can be especially helpful [42,43]. After scanning the papers since 2015, we reviewed 137 

papers that include IAQ and TQ surveys and sourced the origin of the discovered subjective measures 

by the ‘reference-by-reference’ method. Standards and textbooks such as Human Thermal 

Environment [44] ANSI/ASHRAE Standard 55 [45], EN-EN16798-1 [46], ISO Standard 7730 [47] 

and ISO Standard 10551 [48] were also reviewed. In addition, we included relevant articles of which 

we are aware but were not included in the references. Moreover, we reviewed the use of subjective 

measurements (human as a sensor) in different application scenarios such as environment 

evaluation, HVAC system control and Automated Fault Detection and Diagnosis (AFDD) of HVAC. 

Based on the literature review, we collected factors that need to be considered for developing SKPI 

and propose a methodological framework.  
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3 MEASURING OCCUPANTS’ FEEDBACK  

The reviewed subjective measurements commonly include two parts: questions and scales. 

Questions (Figure 1a) refer to the individual prompts that specify what subjective experience is being 

asked about. These questions can vary widely depending on the purpose of the survey and the 

information being sought. Questions can be general (e.g., "How do you feel right now in this place?") 

or specific (e.g., "Is the environment thermally acceptable?"). Scales (Figure 1b-e) refer to a set of 

response options used to measure a participant's response to a particular question, incorporating 

verbal anchors (Figure 1) that are descriptors of subjective feelings. Five types of scales can be 

identified in the literature based on the verbal anchors, assigned orders/numeric values to the verbal 

anchors, and contiguity of the scales:  

− Nominal Scale (NS) (Figure 1b) uses distinct categories of verbal anchors with no inherent order, 

e.g. Cough, Fatigue, and Headache. 

− Ordinal Scale (OS) (Figure 1c) orders verbal anchors without specifying numerical intervals 

between them, e.g. the ranking of Sick Building Syndrome (SBS) symptoms: Never, Rarely, 

Sometimes, Often, Always. 

− Likert Scale (LS) (Figure 1d) assigns numerical values to each verbal anchor. Respondents can 

choose a specific anchor, but cannot select any value in between two anchors, making it a 

discrete scale. For example, rating agreement levels from Strongly Unacceptable (1) to Strongly 

Acceptable (5). 

− Visual Analog Scale (VAS) (Figure 1e) uses a continuous line with two endpoints, commonly 

ranging from 0 to 100 [49]. Respondents can choose any value between two verbal anchors. 

− Graphic Rating Scale (GRS) (Figure 1f) is a combination of LS and VAS with verbal anchors placed 

at intervals along the line to assist respondents in deciding the position of their marks [50,51]. 

Notably, the GRS is often mistaken for VAS in the literature. In such cases, we use our defined 

terminology. For example, if a study used the GRS but called it VAS, we categorized it as GRS.  

 

 

Figure 1. Example of a questionnaire: a) question; b) Nominal Scale; c) Ordinal Scale; d) Likert Scale; e) Visual 

Analog Scale; f) Graphic Rating Scale. Note, the numerical values in the brackets and the tick marks of the line are 

often not shown to respondents. The red cross indicates a possible response. 

The LS and GRS have a similar structure and are often interchangeable by adjusting the scale format, 

see Figures 1d and 1f. Both require assigning numeric values to each anchor word. Importantly, any 

linear transformations applied to these numeric values—such as translation, stretching, or reflecting 

transformations—do not alter the psychometric properties of the scales, see Figure 2. For instance, 

in an original three-point acceptance scale, the words 'Unacceptable', 'Just Acceptable', and 
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'Acceptable' are assigned the values -1, 0, and 1, respectively. These values can be adjusted to 0, 1, 

2 (Figure 2b, translation transformation), -100, 0, 100 (Figure 2c, stretching transformation), or -1, 

0, 1 (Figure 2d, reflecting transformation). Despite these changes, the relative distances between 

verbal anchors remain consistent. This means that the interpretation of these scales remains 

unchanged, with only variations in numeric notation. 

 

Figure 2. Invariant of a scale: (a) original scale; (b) Translation transformation; (c) Stretching transformation; (d) 

Reflecting transformation. These four scales are identical. 

Based on the points of origin in verbal anchors, the literature also classifies the scales into two types: 

unipolar and bipolar. 

− Unipolar scales have one direction starting from a single origin point, see Figure 3a. 

− Bipolar scales are typically symmetrical, featuring two poles with a neutral point. The scale 

measures intensity in both directions away from this neutral point, with each direction having 

increasing levels of intensity, see Figure 3b. 

 

 

Figure 3. Examples of (a) Unipolar and (b) Bipolar scales. 

The following sections summarize results into tables according to the questions and scales and their 

typology. For scales, any linear transformations as illustrated in Figure 2 are treated the same as the 

original scale. Due to the extensive number of scales reviewed, the complete list of scales and their 

corresponding references are provided in Appendix A. The tables in the main text mainly highlight 

key scales relevant to the text analysis. 

3.1 Thermal Quality (TQ)  

The number of items used for assessing TQ varies in the literature. Thermal Sensation, Thermal 

Comfort, Thermal Acceptance, and Thermal Preference are the most used items [52]. In total, the 

literature review identified seven items:  

− Thermal Sensation (TS): The detection of the temperature of the environment, ranging from 

warm to cool [53]. 
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− Thermal Comfort (TC): The condition of mind that expresses satisfaction with the thermal 

environment [54]. 

− Thermal Acceptance (TA): The willingness of individuals to tolerate and accept the thermal 

environment. 

− Thermal Satisfaction (TSat): The overall fulfilment experienced by the subject with the thermal 

environment. 

− Thermal Pleasure (TPle): Positive and enjoyable emotional response to (changing) thermal 

conditions. 

− Thermal Tolerance (TT): The capacity of individuals to endure and cope with the thermal 

conditions. 

− Thermal Preference (TP): The individual's choice for a particular thermal condition. 

3.1.1 Questions 

Both general and specific questions were found in the literature (Table 1). General questions cover 

a broad domain [55] (Table 1, General Thermal Quality category), such as 'How are you feeling at this 

precise moment?' [56]. In contrast, specific questions target a particular TQ items by incorporating 

terms related to the item (Table 1), such as asking about TC using the word 'comfort' [57]. Some 

questions emphasize the temporal factor by asking participants 'right now', 'current', and etc. [55–

63] or stress the spatial factor[58–60], such as 'At your workspace' [60].  

Table 1. Questions for subjective measures of thermal quality and indoor air quality   

Question Category Questions 

General Thermal 

Quality 

‘How do you find your current thermal environment?' [55] 

'How are you feeling at this precise moment?' [56] 

'How do you feel, right here, right now?' [58] 

'Please circle how you feel right now?' [63] 

'How do you feel about the temperature right now? (please circle only one)' [62] 

Thermal Sensation 

'Please rate your thermal sensation?' on your …[64] 

'Rate your current whole body Thermal Sensation / what whole-body thermal sensations 

would your prefer? [57] 

Thermal Comfort 
'Rate your current whole-body thermal comfort' [57] 

'Please rate the Thermal Comfort on your...' [64,65] 

Thermal Acceptance 

'Right now, how acceptable is the thermal environment at your workspace?' [59] 

'Do you consider the thermal environment acceptable?' [66] 

'How would you rate the overall acceptability of the temperature at this moment?[62] 

Thermal Satisfaction 'How satisfied are you with the temperature in your workspace?' [60] 

Thermal Preference 

'Please state how you would prefer to be now' [56] 

'Please indicate how you would like to be now' [61] 

'Would you like to be warmer, cooler, or no change?' [62,63] 

General Indoor Air 

Quality 

'How do you judge the air quality in the room at the moment?' [67] 

'How do you perceive the current quality of the air in the room? ' [68] 

'How do you assess the air quality?' [69] 

'How do you feel about the air freshness of your classroom at this moment?' [70] 

'How is the air quality in the classroom at this moment?' [70] 

'How do you feel about the air freshness of your classroom at this moment?' [70] 

'Have you experienced the following perception while working in the underground 

shopping center in the last month:' [71] 

'Overall, does the air quality in your workspace enhance or interfere with your ability to 

get your job done?' [72] 

'How would you describe the indoor conditions in this office at this moment? Please tick 

one box per scale.' [73] 

'How would you best describe the sources of indoor air quality discomfort?' [74]  

http://www.brainsforbuildings.org/
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Question Category Questions 

‘Have you been bothered during the last three months by any of the following factors at 

your work place? Draught,  strutty "bad' air, Dry air, Unpleasant odor,  Dust and dirt’ [75] 

 Specific Indoor Air 

Quality Items 

'Are you satisfied with indoor air quality?' [74] 

'How satisfied are you with the air quality in your workspace?' [76] 

'Assess odor intensity' [77] 

'How strong is the odor in this room?' [78] 

'How satisfied are you with the air quality in your workspace (i.e. stuffy/stale air, 

cleanliness, odors)?' [79] 

'How acceptable is the air quality?' [80] 

Sick Building 

Syndrome 

“Which symptoms do you experience during work? Do these symptoms clear up within 

1–2 hours after leaving the house?” [81] 

“Have you experienced the following symptom(s) while working during the last 

month?”[71] 

“In the past 12 months, have you had more than two episodes of any of the following 

symptoms?” [82] 

“Right now, I feel as follows:” [77] 

“Have you been bothered during the last three months by any of the following factors at 

your workplace?” [75] 

“Was your work either “somewhat” or “very’’ disrupted by any experience of each of 

following symptoms?” [83] 

3.1.2 Scales 

Thermal Sensation: The verbal anchors used in TS scales are consistent (see the complete list of 

scales in Appendix A, Table A.1). TS measurements mostly employed GRS while LS has been used 

less frequently. The ASHRAE 7-point scale is the most popular scale (Table 2, Scale B). By adding 

anchor words ‘Very Cold’ and ‘Very Hot’ at the ends, a 9-point scale has been constructed (Table 2, 

Scale A). This 9-point scale is particularly used in extreme environments due to its broader range. 

The 5-point scale (Table 2, Scale C) covers the same range as the 9-point scale. The number of VAWs 

and their distribution affect the interpretation of subjective responses. Notably, the middle points of 

‘Very Cold’ and ‘Neutral’ are ‘Cold’ on the 5-point scale, whereas it is on the 9-point scale, they are 

‘Cool’. 

Thermal Comfort: Like the TS scales, the verbal anchors are also consistent across TC scales (see 

the complete list of scales in Appendix A, Table A.2). The term 'comfort' is used to structure VAWs by 

adding prefixes such as 'Un-', 'Very', 'Dis-', 'Fairly', 'Slightly', and 'Clearly'. However, scale spans differ 

between studies. Most scales end at 'Comfortable' or 'Uncomfortable', while some extended to 'Very' 

or 'Extremely' Comfortable or Uncomfortable. Some VAWs are used interchangeably as middle points 

of the scale, such as 'Indifferent', 'Neutral', 'Just comfortable / Just uncomfortable', or 'Slightly 

comfortable' and 'Just comfortable'. The GRS is the most common format for gauging TC. The most 

popular scales are the symmetric bipolar 6-point scale (Table 2, Scale D) and the unipolar 5-point 

scale (Table 2, Scale E). The relative distances between VAWs and the baseline vary among scales. 

For instance, in scale F in Table 2, the relative distance 
‘Comfortable’− ‘Neutral’

’Very comfortable’− ‘Neutral’’
  equals 2/4, which 

differs from scale G in Table 2, where the relative distance between 
‘Comfortable’− ‘Indifference’ 

’Very comfortable’− ‘Indifference’ 
 

equals 2/3. This leads to inconsistent interpretations of occupants’ mean votes. When two 

responses are ‘Very comfortable’ and baseline (‘Neutral’ or ‘Indifferent’), the mean of these two 

responses in Scale F is ‘Comfortable’, but in Scale G, it is between ‘Comfortable’ and ‘Slightly 

Comfortable’. 

Thermal Acceptance, Thermal Satisfaction, and Thermal Pleasure: The scales used for TA, TSat, and 

TPle are like those for TC evaluation (see the complete list of scales in Appendix A, Tables A.3, A.4, 

and A.5). The VAWs are commonly based on the word roots ‘Acceptance’, ‘Satisfaction’, and 

‘Pleasant’ in combination with positive prefixes such as 'Totally', 'Generally', 'Just', 'Clearly', 'Very', 

'Slightly', or negative prefixes such as 'Un-', and 'Not'. These scales range from 2 points to 7 points, 

of which the relative distances between the pairs of the same verbal anchors differ.  
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Thermal Preference: VAWs like "Warmer" and "Cooler" are used in the TP scales (see the complete 

list of scales in Appendix A, Table A.6). Researchers commonly use the 3-point scale (Scale H, Table 

2) and the LS format. 

Thermal Tolerance: TT includes two scales: a 2-point scale and a 5-point scale (Appendix A, Table 

A.7). The 5-point scale has wider and more detailed descriptions than the 2-point scale, which simply 

assesses whether conditions are tolerable or not.  

Table 2. Examples of scale formats for measuring occupant feedback on different thermal quality items. Scales are 

coded by letters, with corresponding references, scale type, verbal anchor words, and associated numeric values. 

Items Thermal Sensation  Thermal Comfort 
Thermal 

Preference 

Scales  A  B  C  D E  F G  H 

Ref. 
[57,8

4–88] 

[89–

92] 

[93,9

4] 
[61,95–99] [91] [66,100]  [101] 

 

[59,90,91,1

02–104]  

Scale 

type 

GRS/L

S 

GRS/

LS 

GRS/

LS 
GRS/LS GRS LS GRS LS 

No. of 

Verbal 

ancho

r 

words 

9-

point 

7-

point 

5-

point 
6-point 5-point 5-point 7-point 3-point 

 

Numer

ic 

value 

Verbal Anchor Words of the corresponding scales in each column 

4 
Very 

hot 
-  

Very 

Comfortabl

e 

    

3 Hot Hot     
Very 

comfortable 
 

2 Warm Warm 
Very 

hot 

Comfortabl

e 
 

Very 

comfortable 

Comfortabl

e 
 

1 

Slightl

y 

warm 

Slightl

y 

warm 

Hot  Comfortable 
Comfortabl

e 

Slightly 

comfortable 
Want warmer 

- 0 

Neutr

al 

Neutr

al 

Neith

er 

cool 

Nor 

warm 

Just 

comfortable Indifference/

Not 

uncomfortabl

e 

Neutral Indifference No change 

+0 

Just 

uncomforta

ble 

-1 
Slightl

y cool 

Slightl

y cool 
Cold  

Slightly 
uncomfortabl

e 

Uncomforta

ble 

Slightly 
uncomforta

ble 
Want warmer 

-2 Cool cool 
Very 

cold 

Uncomforta

ble 

Uncomfortabl

e 

Very 

Uncomforta

ble 

Uncomforta

ble 
 

-3 Cold Cold   

Very 
Uncomfortabl

e 
 

Very 
Uncomforta

ble 
 

-4 
Very 

cold 
  

Very 

uncomforta

ble 
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3.2 Indoor Air Quality (IAQ) 

The assessment of IAQ perception can be categorized into two classes: (i) Direct assessment, 

querying occupants about their sensory perceptions of IAQ, such as odors, humidity (indicative of 

mold), and overall satisfaction; (ii) Indirect evaluation by assessing symptoms associated with IAQ 

such as SBS. 

3.2.1 Direct Evaluation of IAQ 

The literature review identified four IAQ perception items: Sensation, Acceptance, Satisfaction, and 

Preference. The questions and scales used in this research domain are often based on the Lawrence 

Berkeley National Laboratory questionnaire [105].  

− IAQ Sensation (IAQS): The sensation of the quality of indoor air, including factors such as humidity 

levels, odors, air freshness, and presence of pollutants. 

− IAQ Acceptance (IAQA): The willingness of individuals to tolerate and accept the prevailing indoor 

air quality conditions in their environment. 

− IAQ Satisfaction (IAQSat): The overall fulfilment experienced by individuals with the indoor air 

quality in their environment, including factors such as comfort. 

− IAQ Preference (IAQP): The individual's desire for either more fresh air or no change in indoor air 

quality, reflecting their perceived need for ventilation adjustments.  

3.2.2 Questions 

Inquiries into IAQ typically fall into two broad categories: those probing the overall IAQ landscape 

(Table 1, “General Indoor Air Quality” category), and those focusing on specific facets such as odors, 

freshness, and tolerance for staleness (Table 1, “Specific Indoor Air Quality Items” category). Echoing 

TQ results, some questions account for temporal factors such as 'At the moment', or spatial factors 

such as 'At your work' or 'In your room'. 

3.2.3 Scales  

IAQ Sensation (IAQS): IAQS involves factors such as the sensation of humidity or odors (Table 3, Scale 

A and B). This assessment typically employs two types of questions (see the complete list of scales 

in Appendix A, Tables A.8 and A.9). The first type senses IAQ as a whole. Subjects evaluate the overall 

IAQ using scales with verbal anchors like "Bad," "Poor," "Good," and "Excellent" (Appendix A, Table 

A.8). LSs are commonly used to develop these scales. In the second type, researchers customize 

scales to capture occupant feedback on specific varieties of IAQS, including Odor, Humidity, and 

Freshness (Appendix A, Table A.9). VAWs match the varieties measured, such as "Fresh" and "Stuffy" 

describing air freshness. LS and GRS are commonly used. 

IAQ Satisfaction (IAQSat): The IAQSat scale utilizes VAWs derived from the root word "Satisfaction". 

The number of VAWs and the range they cover vary across scales (see the complete list of scales in 

Appendix A, Table A.10). The relative distances between VAWs are also inconsistent. For example, in 

Scale C in Table 3, the distance between ‘Satisfied’ and ‘Neutral’ is half the distance between ‘Very 

satisfied’ and ‘Neutral’ (
‘Satisfied’− ‘Neutral’

’Very satisfied’− ‘Neutral’
=

1

2
 ). However, in Scale D in Table 3, this relative 

distance is 2/3 (
‘Satisfied’− ‘Neither satisfied nor dissatisfied’ 

’Very satisfied’− ‘Neither satisfied nor dissatisfied’ 
=  

2

3
 ). As explained in the TC section, this 

leads to inconsistent interpretations of occupants’ mean vote when the submitted answers are ‘Very 

satisfied' and 'Neutral'. Both GRSs and LSs are employed in designing these satisfaction scales. 

IAQ Acceptance (IAQA): The IAQA scales have less variety than TA scales and mostly use GRS and 

VAS for the scales (see the complete list of scales in Appendix A, Table A11).  

IAQ Preference (IAQP): IAQP has a 2-point LS scale to indicate if respondents would like ‘More air’ or 

‘No need to change’ [106] (see Table 3, Scale E).  
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Table 3 Examples of scale formats used to measure occupant feedback on direct evaluation of IAQ. Scales are 

indicated by letters, with corresponding references, scale type, verbal anchor words, and associated numeric 

values. 

Items IAQ Sensation  IAQ Satisfaction  IAQ 

Preferen

ce  

Scales  A  B  C  D E 

Ref.  [77,90,107] 
 [77,107–

109] 
[110] [76,105,108,111–115] 

[106] 

Scale type LS / GRS LS / GRS LS LS LS 

No. of Verbal anchor 

words 
7-point 6-point 5-point 7-Point 2-Point 

 

Numeric value Verbal Anchor Words of the corresponding scales in each column 

3 
Much Too 

humid 
  Very satisfied 

 

2 Very humid  Very satisfied Satisfied  

1 
Slightly 

humid 
 Satisfied Slightly satisfied 

More air  

+ 0 

 
Just right 

 

No Odor 

 
Neutral 

Neither satisfied Nor 

dissatisfied 

No need 
to 

change  
- 0 

-1 Slightly dry Slightly Odor Dissatisfied Slightly dissatisfied  

-2 Very dry 
Moderate 

Odor 

Very 

dissatisfied 
Dissatisfied 

 

-3 Much Too dry Strong Odor  Very dissatisfied  

-4  
Very strong 

Odor 
  

 

-5  
Overpower 

Odor 
  

 

3.2.4 Evaluation of Sick Building Syndrome  

Most SBS questionnaires are designed based on the principles of the Örebro (MM40) Indoor Climate 

Questionnaire [75]. The symptoms frequently included in SBS-related questionnaires are respiratory, 

dermal, eyes, throat, and general symptoms [68,77,116–120] (see the complete list of symptoms 

items in Appendix A, Table A. 12). Headaches are the most asked symptom, followed by coughs and 

fatigue. Perceptions like feeling heavy-headed and experiencing dizziness are also recurrent in the 

literature. However, symptoms such as hoarse or dry throat, lethargy, draughts, nausea/dizziness, 

and irritated, stuffy, or runny nose are less common. 

3.2.5 Questions 

The questions of SBS normally do not inquire about a specific symptom (Table 1, Sick Building 

Syndrome category). Instead, the inquiries are general and ask people to select/rate a set of 

symptoms they experienced with temporal and spatial reference. 

3.2.6 Scales 

Most of the scales are structured in OS format to indicate the frequency of the symptoms. The 

descriptions of frequency can be a binary option with 'Yes/Often' or 'No.' (Table 4, Scale H and I) or 

3-5 options with a finer granularity (Table 4, Scale J). The VAWs vary across different scales, where 
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the popular ones are ‘Never’, ‘Sometimes’, ‘Often’, and 'Regularly'. The VAS (Table 4, Scale A and K) 

is less frequently used to describe these symptoms.  

Table 4. Scale formats used to measure sick building syndrome. Scales are coded by letters, with corresponding 

references, scale type, verbal anchor words, and associated numeric values. 

Scales   A B  C  D E  F  G  H I  J  K 

Ref. 
[118, 

121] 
[122] [123] [119] [124] [125] [126] 

[127

–

129] 

[13

0] 

[119,131, 

132] 

[68, 

125] 

Scale 

type 
VAS OS OS OS OS OS OS NS OS OS VAS 

No. of 

Verbal 

anchor 

words 

 5-

point 
5-point 4-point 

5-

point 
4-point 5-point 

2-

point 

2-

poin

t 

3-point  

 

Numer

ic 

value 

Verbal Anchor Words of the corresponding scales in each column 

 

very 

seriou

s 

Very 

bad 

Very 

often 
 

suffer 

a lot 
 

frequentl

y 
 

yes 

Ofte

n 

Yes, often 

(every week), 

or regularly 
 

100% 

 

 

 

 

 

0% 

  Bad Often often 

suffer 

slightl

y 

Very 

likely 

sometim

es 

  Norm

al 

someti

me 

Regularl

y 
suffer Likely neutral 

no No 

Yes,(sometim

es) 

occasionally 
   good Raeley 

someti

me 

almos

t 

never 

suffer 

possibl

e 
rarely 

 never 
Very 

good 
Never Never 

never 

suffer 

unlikel

y 
never   

No, never, or 

not related 

3.3 Application scenarios 

This section presents an overview of the current literature on SKPI applications. Although the term 

"SKPI" is rarely mentioned explicitly, the concept is represented through alternative terminology 

across studies. SKPIs are primarily applied in environmental assessments and optimizing HVAC 

control. Only two studies have explored the use of SKPIs for FDD applications [133,134]. Similarly, 

integrating SKPIs into energy flexibility strategies has also been proposed [135–137], but this yet 

remains largely conceptual. For each application, the survey design and SKPIs calculation were 

overviewed. Survey deployment tools used in the literature include traditional, paper-based methods 

and technology-based interfaces, such as Tangible User Interfaces (TUIs) and/or Graphical User 

Interfaces (GUIs) [37].  

3.3.1 Environmental Quality Assessments 

Survey design  

Subjective measurements in environmental assessments aim to capture occupants' perceptions of 

IEQ factors. The importance of each IEQ factor depends on (i) occupants’ sensitivity to that factor 

and (ii) the extent to which that factor impacts overall environmental satisfaction [138,139]. 

Frontczak and Wargocki [138] revealed that TQ has a greater impact on occupants’ overall 

satisfaction than visual quality, acoustic quality, and IAQ. Similarly, a field study in China showed 

occupants in various types of public buildings prioritized improvements in TQ and IAQ over other IEQ 

factors [139]. Moreover, the number of items selected to evaluate each IEQ factor varies across the 

studies. For example, TQ has sometimes been assessed using a single item such as TS [58,88], 

while others used multiple items like TS combined with TP [140]. 
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Calculation  

The most popular statistics for summarizing these subjective measures into KPIs include mean, 

median, percentage and intercepts of regression analysis. For instance, Z. Li et al. [103] applied non-

parametric statistical methods, such as the Mann-Whitney U-test and the Kruskal-Wallis H-test to 

analyze group differences in human perceptions of the environment, explicitly implying the median 

of the human perceptions serves as the KPI. In another study, Ko et al. [141] utilized the mean 

differences of multiple TQ items to compare TQ perceptions between windowed and windowless 

conditions using permutation tests. The ASHRAE 55 standard [54] specifies a minimum of 80% TSat 

(percentage) as the KPI for evaluating TQ. Within the adaptive TC framework, the "neutral 

temperature" serves as a crucial indicator calculated as the intercept of a regression model that 

correlates TS with operative temperature [142].  

3.3.2 HVAC Control System 

Survey Design  

To optimize energy consumption and ensure occupants' comfort, subjective measurements are also 

fed to HVAC controls to complement or replace traditional TC metrics that typically rely on indoor air 

temperature data [143–145]. In such cases, TQ becomes the primary IEQ factor. Some studies 

directly utilize individual data to develop occupants’ personal TP profiles to control HVAC systems at 

either personal or zone level [35,146–148]. Other studies aggregate individual data into SKPIs with 

TS [148–153] or TP [35,154–156] serving as the input for the HVAC controls. The most widely 

adopted approach is using the PMV model to determine the temperature setpoint that offsets the 

actual TS votes, typically measured by the ASHRAE 7-point scale [149,151–153]. 

Calculation  

The calculation of the SKPIs relies on means and percentages [149–152,155]. For instance, in the 

study by Erickson et. al. [149], the actual mean vote (AMV) was determined by averaging TS votes 

(on the ASHRAE scale) over 10-minute windows. If the sum of AMV and PMV deviated from zero, a 

new temperature setpoint was derived to make the sum equal to zero. Mansur et. al. [155] collected 

occupants’ TP (warmer, colder and comfortable). The percentage of complaints was calculated 

relative to the number of occupants in the space. If the difference between ‘warmer’ and ‘colder’ 

votes exceeded 10%, the HVAC system adjusted the temperature setpoint by ±1°C, depending on 

the majority preference.  
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4 DEVELOPMENT OF SKPIS  

The previous section discussed different scales and questions to obtain subjective data using survey 

measurements. In this section, we discuss how to translate these subjective data into SKPIs. First, 

we discuss the essential attributes of what makes good SKPIs. Then, we present a methodology 

framework for developing SKPIs. 

4.1 Attributes of SKPIs 

To ensure SKPIs are effective, they should have the following four critical attributes: privacy, 

accessibility, quantifiability, and actionability, which is in line with the literature [10,24]. 

− Privacy: prioritising privacy and data security is crucial to maintaining occupants’ trust and 

complying with regulations. Throughout data collection and the development of SKPIs, privacy 

must be strictly safeguarded. Personal information should not be collected unless absolutely 

necessary. If collecting personal data (e.g., age or gender) is unavoidable, the information must 

be anonymized, and no combination of data points should allow for identifying individuals. 

− Accessibility: The development of SKPIs should utilize user-friendly tools, such as apps or 

computer-based questionnaires, to facilitate data collection. Data sources and measurements 

should be clearly defined and understandable by occupants and stakeholders.  

− Quantifiability: To effectively transform subjective data into actionable information, it must be 

quantifiable. "It cannot be effectively managed if it cannot be measured" [157]. SKPIs should 

convert subjective occupant data into numeric indicators. 

− Actionability: SKPIs must effectively guide targeted solutions. For example, a TC-based SKPI 

cannot serve as an indicator for controlling indoor temperature, because the occupants may 

require either lower or higher indoor temperatures when the TC-based SKPI indicates discomfort. 

An actionable indicator for thermostatic control may be a TP-based SKPI, where occupants 

indicate that the temperature should be warmer or cooler.  

4.2  Methodology Framework  

The methodology framework for developing SKPIs consists of the following four steps (Figure 4): 

1. Application goal: Determining the application goal for the SKPIs. 

2. Survey design: Designing the survey considering the application goal. 

3. Survey deployment: Develop survey deployment to efficiently and effectively obtain occupant 

feedback.  

4. SKPI computation: Develop computation algorithms for SKPIs from subjective data. 
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Figure 4. Steps for developing subjective key performance indicators 

4.2.1 Step 1: Applications Goals 

The application goal guides the development of SKPIs at each step. For example, SKPIs designed to 

assess TC differ from those developed to control indoor temperature. Assessing TC requires only the 

TC item, whereas temperature setpoint adjustments for control purposes necessitate the inclusion 

of the TP item. Figure 5 shows examples of application goals. It is important to note that SKPIs are 

mostly applicable in operational buildings, as they rely on post-occupancy feedback for data 

collection. However, historical SKPI data from operational buildings may also inform future building 

design 
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Figure 5. Application goals for developing subjective key performance indicators. 

4.2.2 Step 2: Survey Design 

The survey design process involves three key steps: (i) Selecting the appropriate IEQ factors, (ii) 

Choosing the specific items for each factor, and (iii) Tailoring the questions and scales to align the 

survey design with the application goal (Figure 6). Beyond content selection, surveys can also be 

structured to enhance efficiency and engagement by using sequential surveys and skip-logic 

methods that present only relevant follow-ups. For example, if respondents feel comfortable, 

discomfort-related questions are skipped. This dynamic survey flow minimizes redundancy, keeps 

respondents engaged, and improves data quality. 

 

Figure 6. Important factors of survey design for developing subjective key performance indicators 

 

IEQ factor selections: Selecting IEQ factors to develop SKPIs is relatively straightforward compared 

to other steps in this section. Depending on the application goals, either single or multiple IEQ factors 

can be utilized in the survey. For example, to develop an SKPI for evaluating indoor TQ, the TQ factor 

alone can be used. However, for a comprehensive assessment of the indoor environment, multiple 

IEQ factors such as TQ, IAQ, and acoustic quality should be included in the survey. 

Item selection: Assessing each IEQ factor can be achieved through single or multiple items. However, 

careful consideration is necessary when selecting the appropriate items. It again should align with 

the application goals at hand. For example, for evaluating indoor thermal conditions, TT is less 

relevant, as indoor temperature hardly results in intolerable conditions. In an outdoor scenario, TT 

may be more of an interest. An analysis of the ASHRAE Global Thermal Comfort Database II [158] 

shows that TQ perception consists of at least two dimensions, with TS and TC forming the primary 

components in a principal component analysis. These two dimensions are also supported by other 

studies [48,52,158–161]. For instance, Zhang & Zhao [159] revealed that TA and TC were closely 

correlated under both uniform and non-uniform conditions, meaning they measure similar aspects 

of thermal experience rather than capturing different dimensions. On the other hand, TS responses 
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were weakly associated with either TC or TA in non-uniform conditions [159]. Notably, while repetition 

can improve reliability [162], it may also introduce redundancy, leading to participant disengagement 

[163]. In contrast, selecting weakly correlated items (e.g., TS and TC) provides a broader 

understanding of occupant perception. To effectively gauge TQ perception, we recommend selecting 

at least two items from the following categories: Sensation (TS), Preference (TP), Appraisal (TC or TA). 

Questions: To collect credible data from occupants, it's important to formulate questions that adhere 

to several key principles:  

− Use easily understandable language: Ensure that the language used in the questions is clear 

and easily understandable by the survey respondents. The question text should avoid using 

jargon or ambiguous terms. For example, a question like "How do you rate the temperature in 

your workspace?" is clear because it directly addresses thermal environments. In contrast, a 

vague question like "How are you feeling right now?" lacks clarity because it does not specify 

what aspect of the subject's experience is being asked about. Additionally, when translating 

questions into other languages, care should be taken to ensure the translation accurately 

conveys the original intent and meaning. This helps maintain clarity and ensures effective 

communication across diverse respondents. Lastly, it is important to adapt the language 

complexity to the age of the respondents: Children require simpler formulations than adults.  

− Avoid bias: Questions should be neutral and free from words or phrasing that might influence 

the respondents' answers. For instance, asking "Do you feel cold?" implies to the subjects that 

they should feel cold by including the word "cold". A more neutral alternative, such as "How do 

you sense the room temperature at this moment?", as suggested in ISO 10551 [48], ensures 

that the question is unbiased. 

− Include temporal references: Incorporating temporal reference (e.g. "Right now") ensures that 

respondents provide feedback relevant to the specified time. Questions about past events may 

introduce recall bias, where respondents’ current feelings influence their recollection of past 

events [164]. For example, asking 'How do you assess the thermal environment in the last 

season?' may lead to recall bias, as respondents may provide answers influenced by their current 

feelings rather than an accurate recollection of the past season's thermal conditions. 

− Include spatial references: Specify the location to help the respondents clearly understand the 

environment they are providing feedback about. For example, specifying a particular area within 

the building, such as "At the workstation," ensures clarity and context in their responses.  

Scale format: Occupants use scales to convey their responses, and the type of scale plays a crucial 

role in translating occupant feelings into quantifiable data. As identified in Section 3, common scale 

types include the VAS, LS, NS, OS, and GRS. The GRS, LS, and VAS are the most popular for evaluating 

TQ and IAQ. The performance of these scales can be evaluated based on three criteria [160]: 

− Responsiveness: Ability to detect important changes, even small ones. 

− Reliability: Consistency of results over time and reproducibility under similar conditions. 

− Validity: Accuracy in measuring what the instrument is intended to measure. 

Studies have compared the responsiveness and validity of the LS and VAS. A small number of studies 

[165,166] found no significant difference between LS and VAS. Jaeschke et al. [166] recommended 

the LS for its simplicity and ease of interpretation. On the other hand, DeVellis et al. [162] highlighted 

that the LS is sensitive to biases, including central tendency bias (respondents avoid extreme 

answers and opt for middle responses) and acquiescence bias (respondents tend to agree with 

statements regardless of their true beliefs). Comparatively, the VAS, using a continuous line, is highly 

sensitive to slight changes and minimizes consistency bias since respondents are unlikely to 

remember their previous marks on a featureless line. Since both the LS and VAS have strengths and 

weaknesses, many studies combined LS and VAS to make the GRS. A study by Lee et al. [49] showed 

that the GRS was more in line with indoor air temperature and mean skin temperature compared to 

LS and VAS. Near the neutral temperature, the GRS is more sensitive in distinguishing TS than LS 

and VAS [49]. On the other hand, Wang et al. [160] analyzed the uncertainty in subjective TC 

measurement through three chamber experiments. They concluded that the LS is recommended for 

subjective TC measurement as GRS exaggerates intra-individual differences. 

Another consideration in scale format design is the use of bipolar and unipolar formats. ISO 

10551:2019 [48] recommends that bipolar format structures are more sensitive than unipolar 

formats in capturing occupant feedback near neutral reference points. However, there is a lack of 
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empirical studies to support this claim. In contrast, Tzeng et al. [167] found that both formats were 

reliable and valid when comparing bipolar and unipolar response formats in personality assessment 

using data from 135 college students. However, the bipolar format was preferred among the 

students. Similarly, Yang et al. [168] compared four response scales to assess subjective indoor 

environmental sensation and perception in combined thermal and acoustic conditions with university 

students. The results revealed that the bipolar VAS was preferred in all conditions. The performances 

of the response scales were not significantly different for young university students. DeVellis et al. 

and Thorpe et al [49,162] emphasized that choosing between bipolar or unipolar formats depends 

on the logic of the research questions. Research does not conclusively determine whether bipolar or 

unipolar scales are more effective in collecting data; however, preference often depends on the 

specific conditions of the scale. Subjects tend to favor bipolar scales when the number of VAWs is 

equal on both sides. In contrast, unipolar scales are preferred when the scale focuses on a single 

continuum, where the origin is usually the opposite of the rest of the VAWs. For example, the origin 

might be 'Comfortable,' with the rest of the scale ranging from 'Uncomfortable' to 'Very 

uncomfortable'. Unipolar scales are particularly useful in applications like Automated Fault Detection 

and Diagnosis or Control, where the focus is on assessing the intensity of discomfort rather than 

comfort. 

Number of VAWs: VAWs help respondents select precise responses and facilitate accurate 

placement along a scale, thereby improving the reliability and validity of the resulting data [169]. For 

instance, including intermediate VAWs like "Slightly Cool" and "Cool" between "Cold" and "Neutral" 

(Table 2, Scale B) provides subjects with more guidance for expressing their sensations. However, 

including many VAWs can introduce varying interpretations and confuse the subject as differences 

between anchor words become less obvious. According to Miller et al. [170] and Saaty et al. [171], 

humans can unambiguously identify up to seven stimuli, making seven the recommended maximum 

number of VAWs for judgment scales. To be more specific in the IEQ, human sensitivity to 

environmental changes is crucial for determining the number of VAWs on a scale, as the sensitivity 

to thermal variations must align with both the scale's level of detail and the mind's capacity to 

perceive differences [49]. For example, young adults tend to have a higher sensitivity to temperature 

changes compared to older adults [172]. Therefore, the effectiveness of the scale may depend on 

the respondents’ characteristics, such as age, and the level of detail required for the specific 

application. 

Distance between the VAWs: In the case of more than two VAWs, the (relative) distances between 

these words should be considered. For instance, the widely used ASHRAE 7-point TS scale (Table 2, 

Scale B) assumes that the verbal anchors are equidistant. However, a large international 

collaborative questionnaire study [173] revealed that the distances between verbal anchors in the 

ASHRAE scale were not interpreted as equal by the respondents. Respondents' distance perceptions 

were influenced by their lifetime experiences such as regional and seasonal contexts. For example, 

respondents from different climate regions perceived the distance between "slightly warm" and 

”neutral" differently compared to the distance between "slightly cool" and ”neutral" despite the 

assumption that these distances are equal because they appear visually equal. 

Translation of the VAWs: Scales in international standards like ASHRAE 55 [54] and ISO 10551 [48] 

are primarily in English for international communication and are often not available in many other 

languages. They are translated when implemented as native speakers' responses may differ from 

those of non-native speakers for the same questionnaire [173,174]. Thermal perceptive semantics 

may have different linguistic dimensions by language itself, and sometimes there is no exact 

equivalent for a thermal descriptor in English, or vice versa. These differences can cause confusion 

when interpreting thermal perceptions in different languages. [175].  

For example, a study by Al-Khatri and Gadi [176] revealed issues of translating ASHRAE, Bedford, 

and Nicol scales into Arabic, such as irregular category widths, asymmetry, and deviations in middle 

category placement. For example, when translating the 7-point ASHRAE TS scale to Arabic, "cool" was 

translated as "Moderate," "Mild," or "Neither cool nor warm," shifting the perception of neutrality 

towards the cooler end of the scale. Additionally, Schweiker et al. [173] also found substantial 

differences in TC scales among various language versions. They observed significant differences in 

the distribution of responses for Arabic and Farsi, languages read from right to left, compared to 

languages read from left to right. While the scale is symmetrical, reading direction may influence how 

respondents interpret and engage with it. This could be due to cognitive biases, where respondents 
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unconsciously anchor their attention to the starting point of the scale (the right side for right-to-left 

languages), potentially altering their perception of "neutral" or "middle" values. 

When translating scales into languages that lack direct equivalents to English terms, like French, 

intensity may be adjusted by using adverbs instead of adjectives [48]. Alternatively, a VAS can be 

employed to reduce translation problems. Aside from the anchor words at each end, the VAS uses a 

continuous numeric range. This approach relies more on numerical values rather than potentially 

vague VAWs in the middle, reducing confusion that may arise from translation discrepancies. Thus, 

the numeric scale may provide a more precise and consistent measure of intensity, even when verbal 

anchors are challenging to translate accurately. 

4.2.3 Step 3: Survey Deployment 

Following the design of the survey, the next phase is deployment. During this phase, several 

questions should be considered (Figure 7): 

− How frequently should participants fill in the survey (temporal resolution)? 

− Who should fill in the survey and which locations should be considered (spatial resolution)? 

− What interface should be used? 

 

Figure 7. Important factors of survey deployment for developing subjective key performance indicators. 

Temporal resolution: Common resolutions range from larger intervals like annual, occasional (e.g., 

after each building recommissioning) and seasonal (e.g., heating and cooling seasons), to more 

frequent intervals such as monthly, weekly, daily, hourly and complaint-driven (i.e., occupants can 

submit their feedback whenever they have a complaint). Fine data collection granularity, such as 

daily or hourly measurements, may lead to occupant fatigue and loss of engagement. Conversely, 

longer intervals, such as annual assessments, might overlook the dynamics of subjective experience. 

Interestingly, according to Rintala et al. [163], participant fatigue is more influenced by questionnaire 

length than the frequency of prompts. For example, asking occupants multiple times a day to fill in a 

short survey is less burdensome than asking them fewer times a day to fill in a lengthy survey. 

An approach to reduce the number of surveys is proposed by utilizing targeted occupant surveys 

[177]. This survey platform employs real-time feedback to adjust survey requests according to 

specific indoor environmental conditions and ceases surveying once the necessary number of 

responses is obtained. This method aims to minimize occupant surveys while improving the 

approximation to ideal datasets compared to previous methods. In scenarios where only disfunction 

is of interest such as AFDD or control strategy optimization, a potential solution lies in complaint-

driven approaches. It captures detailed occupant feedback only during malfunctions. Zagreus et al. 
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[178] also used a complaint-driven approach to inexpensively gather information on occupant 

satisfaction with IEQ factors. 

Spatial resolution: Spatial resolution spans from entire buildings down to individual rooms and single 

point. When conducting surveys involving many occupants, collecting responses from the whole 

population becomes burdensome. A more efficient way is to sample a small group to represent the 

population of interest. Selecting whom to target can be challenging. To minimize error and bias while 

maximizing representativeness, precise sampling techniques are essential [179]. Randomization is 

often favored as each participant has an equal chance of being selected. Stratification considering 

participant characteristics (e.g. gender, age) can also help to refine the sampling strategy. 

Furthermore, specific locations within a larger building or zone can be considered. This includes the 

orientation of spaces (e.g. south-facing or north-facing) and their functional roles (e.g. office or 

reception area). By accounting for these details, the survey data will more accurately capture the 

diverse conditions present within the total environment ensuring a comprehensive and 

representative analysis.  

Interface: Traditional survey implementation, such as paper questionnaires, is known for being time-

consuming and expensive. Additionally, paper surveys require occupants to invest significant time in 

completion [178]. In response to these limitations and the challenge of achieving continuous 

feedback, modern digital technologies have been adopted [180,181]. Interfaces now play a pivotal 

role in facilitating how occupants interact with surveys. Modern interfaces are categorized into two 

main types: GUIs, including smartphone apps and websites, and TUIs, like interactive panels and 

wearables (e.g., smartwatches) [35,37,182]. Each type offers distinct advantages depending on the 

application context. TUIs are user-friendly and require minimal effort from occupants making them 

suitable for scenarios requiring high-frequency sampling, such as monitoring dynamic environments 

in transition spaces [180,181]. Conversely, GUIs leverage personal devices to facilitate participatory 

sensing, scalability, and easier maintenance through remote software updates, unlike TUIs that 

require physical adjustments [183–185]. 

4.2.4 Step 4: SKPI computation 

Once the survey is deployed and data is collected, it will undergo statistical analysis to convert data 

with different spatial and temporal resolutions into SKPIs. SKPIs can be computed across both 

spatial and temporal dimensions at varying levels of granularity. Aggregating data across individuals 

(spatial granularity) reduces variance caused by inter-individual differences in subjective perceptions 

allowing the observation of temporal dynamics by analyzing aggregated KPIs over time. Conversely, 

aggregating data over time (temporal granularity) mitigates the uncertainty inherent in intra-

individual subjective judgments allowing the identification of spatial variations in the environment. 

By combining spatial and temporal aggregations at appropriate granularities, it is possible to reveal 

both temporal and spatial patterns while simultaneously reducing uncertainty in subjective 

assessments. A variety of statistical measures can further support the development of robust SKPIs: 

− Measures of central tendency like mean, median, and mode can help develop SKPIs that reflect 

the average IEQ. The median is preferred over the mean when: 1) The distribution contains 

extreme data points; 2) Some data points have undetermined values; 3) The data distribution is 

open-ended; 4) The data are measured on an ordinal scale [186]. For nominal data, the mode 

is the preferred measure of central tendency [186].  

− Measures of variability, such as range, interquartile range, standard deviation and variance, help 

to reveal the individual differences and dynamics of the SKPI. Range is highly sensitive to 

outliers. Variance and standard deviations are suitable for normally distributed data, while 

interquartile range focuses on the middle 50% of the distribution and is suitable for skewed data 

or if outliers are present. Moreover, the maximum or minimum values can capture the extremes 

and highlight specific spatial locations and time intervals that need attention.  

− Measures of frequency, such as count and percent, show how often a response occurs. For 

example, standards such as ISO 7730 [47] and ASHRAE 55 [54] stipulate that the TS rate of 

occupants should be at least 80%. 

− Measures of shapes of the distribution include symmetry, skewness and kurtosis. These metrics 

can detect distribution shifts of subjective measures over time or space within individuals or a 

population. 
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− Measures of correlations, such as the Pearson correlation coefficient, Spearman's rank 

correlation coefficient and Cronbach’s Alpha may be used to analyze relationships between 

different IEQ factors or among items within a factor. For instance, correlating similar (repetitive) 

items can help identify and eliminate careless responses when working with survey data, thereby 

improving the reliability and validity of the analysis. 
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5 CASE EXAMPLE OF THE PROPOSED FRAMEWORK 

This section demonstrates a use case of SKPI development using the proposed framework in four 

steps: (i) establishing the objective of the SKPI, (ii) survey design, (iii) survey deployment, and (iv) 

translating the data into actionable indicators. 

Step 1: Application goal 

Fault diagnosis plays a critical role in enhancing the performance of HVAC systems by reducing 

energy waste, maintaining indoor air quality, and ensuring TC. A common fault in such systems is 

stuck heating coil valves, which frequently results in overheating or underheating the conditioned 

building zones. This case application is to develop an SKPI for diagnosing stuck heating coil valves 

of air handling units (AHUs) in office buildings during winter.  

Step 2: Survey Design 

Based on the proposed framework, the survey design for developing an SKPI needs to consider the 

following critical factors: (i) IEQ factor selection, (ii) item selections, (iii) question formulation, and (iv) 

scale formulation.  

− IEQ factor selection: AHU heating coil valves control the air temperature and therefore a stuck 

heating coil valve will result in abnormal variations in air temperature. Hence, the KPI for this 

application case will be based on TQ. 

− Item selection: Three items—TS, TC, and TP—are selected to assess TQ. The TC item is used to 

detect the existence of the fault. If the occupants feel comfortable, the HVAC operation achieves 

its comfort goal in the office building and, therefore, there might be no faults. Uncomfortable 

conditions imply potential faults in HVAC systems. The TS item may inform the ‘direction’ of the 

fault. The heating coil value may be stuck at a higher open position when occupants perceive 

‘hot’, while the heating coil value may be stuck at a lower open position or closed position when 

occupants perceive ‘cold’. In addition, the TP item can be used to rule out some special scenarios 

and to double check the subjective feedback. For example, one may vote ‘slightly uncomfortable’ 

and ‘slightly warm’ but may still prefer warmer conditions. This may be caused for example by 

the transition from the cold outdoors into the indoors or by mistakes made during filling out the 

surveys, instead of the heating valve faults. Since only uncomfortable conditions are relevant for 

fault diagnosis, a skip-logic approach is employed to address these three items: follow-up 

questions on TS and TP are triggered only when discomfort is reported. 

− Question: Three specific questions were designed for TC, TS and TP by incorporating terms like 

‘comfortable’, ‘sensation’ and ‘prefer’. The question stresses “at this moment” and “in this 

place” to avoid recall bias as discussed in section 4. In addition, asking “at the moment” enables 

the possibility of the high-granularity measurement to detect the temporal dynamics of heating 

coil valves stuck. The spatial term “in this place” helps to identify which heating coil valve has 

faults in the case of multi-zone air distribution.  

− Scale: A unipolar scale format is chosen for TC, as the intensity of discomfort reveals diagnostic 

information while the intensity of comfort is less relevant for fault diagnosis. For TS and TP, both 

sides of the neutral point are essential for diagnosing the severity of the faults and, therefore, 

bipolar scale formats are chosen. The GRS scale format is selected for all measurements due to 

its advantages in high sensitivity. To potentially address the equal distance assumption in GRS, 

numerical values are assigned to each VAW on the scale (e.g., -1 for “Slightly Cool”, 0 for 

“Neutral”, +1 for “Slightly Warm”). This may help occupants to assume equal spacing between 

VAWs. For the number of VAWs, we take seven anchor words for TS and TP, as suggested in 

section 4. For the unipolar TC scale, four VAWs are used to describe discomfort (Figure 8). 
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Figure 8. Survey design for diagnosing heating coil valve faults. 

Step 3: Deployment of the survey  

Surveys will be distributed to all occupants to establish a baseline reference under normal operating 

conditions when no faults exist in the heating coils. Since discomfort indicates stuck heating coil 

valves, a complaint-driven approach is used (temporal resolution). Occupants only submit their 

complaints when they feel uncomfortable. This complaint-driven method reduces the survey burden 

on participants compared to a fixed-interval survey approach. Human thermal perceptions are 

influenced by inter- and intra-individual factors beyond ambient air temperature. On top of that, 

temperature spatial differences also exist within the conditioned zone. As a result, collecting 

sufficient feedback is essential to derive reliable SKPIs. To address this, if the percentage of 

occupants submitting complaints exceeds a predefined threshold (indication of the faulty 

conditions), additional diagnostic survey requests can be issued. These surveys may target either all 

occupants or a random sample in the targeted zone (spatial resolution). A GUI is selected to 

implement the proposed deployment method as it enables seamless communication with occupants 

and is easily accessible via personal smartphones.  

Step 4: SKPI calculation 

The collected data consists of individual votes from various rooms within the heating zone (spatial 

resolution) in either the reference survey or diagnostic survey (temporal resolutions). The window of 

SKPI calculation can be in each reference and diagnostic survey (temporal dimension) and at the 

room level and zone level (spatial dimensions). The differences in subjective perceptions at the zone-

level between the diagnostic and reference surveys help identify the occurrence of the heating valve 

being stuck. The variations at room level can distinguish between localized and central faults. For 

example, high variance (one room is comfortable while others are not) suggests a local fault such as 

a variable air volume (VAV) valve problem. Low variance (all rooms are uncomfortable) indicates a 

stuck heating coil valve in the central AHU. The SKPI to diagnose heating valve issues includes:  

− Discomfort ratio: This is calculated as the percentage of individuals reporting discomfort based 

on the diagnostic survey. It implies potential heating coil malfunctions as previously mentioned.  

− Median of TS, TC and TP: The median is used to assess the severity of faults because it is robust 

against outliers, unlike the mean, and more applicable than the mode for continuous data. Using 

central tendency measures also helps reduce uncertainties associated with inter- and intra-

individual variations in subjective responses. 

− Pearson correlation between TS and TP: This identifies outliers and helps exclude specific cases. 

For example, a positive Pearson correlation between TS and TP might indicate occupants 

transitioning from cold outdoor environments into offices, which could skew diagnostic 

interpretations. 
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6 DISCUSSION AND CONCLUSIONS 

Using humans as sensors in building smart controls and management systems has demonstrated 

significant potential to enhance IEQ and building energy efficiency. In this deliverable, existing 

research on occupant feedback measurement has been reviewed, a structured methodological 

framework to convert subjective data into SKPIs has been developed, and a practical application of 

the proposed framework has been presented. However, several limitations should be acknowledged: 

Firstly, a systematic literature review was not conducted due to the extensive volume of relevant 

studies. As a result, the scales and questions collected may not encompass every approach in the 

existing literature. Nonetheless, the review shows clear inconsistencies in scale and question design 

within the surveyed body of work. Secondly, this study only focused on two IEQ factors: TQ and IAQ. 

Other domains, such as indoor acoustic quality, and visual quality were not explored. While the 

proposed methodology is tailored to TQ and IAQ, future studies may extend the framework to address 

subjective measures and applications in these additional domains. 

The findings of this study highlight several critical gaps and questions that necessitate future 

research for SKPI development:  

− How to design efficient yet effective surveys? Efficient surveys should minimize item redundancy 

while capturing essential subjective dimensions of the indoor environment. Existing studies have 

investigated TQ dimensions, but research into the dimensionality of IAQ experiences remains 

limited. Further work is needed to develop concise, comprehensive surveys that reflect these 

complex experiences.  

− How to design validated and robust scales? The literature review shows that different studies 

used different scales to measure the same subjective perceptions, e.g. TS scales in section 3. 

This impedes comparability across different studies and may confound their research findings. 

Many existing scales in the TQ and IAQ domain lack rigorous validation, and concerns have also 

arisen recently regarding the equal-distance issues in the ASHRAE scales [173]. Future research 

should focus on the development of validated, psychometrically robust scales. These efforts 

should consider: 1) Optimal scale format (types and VAWs) tailored to different respondent 

characteristics and application scenarios; 2) The strengths and limitations of various scale 

formats across diverse contexts and populations; 3) Effective translation of scales across 

languages while preserving their psychometric properties.  

− What sample size is sufficient? Subjective judgements are prone to inter- and intra-individual 

variation in nature. Therefore, reliable SKPIs need sufficient samples to balance this variation. 

Further work is required to investigate how large the sample size should be to reduce the intra-

individual and inter-individual noise to an acceptable extent. 

− What are the potential areas for the SKPI applications? The literature primarily highlights SKPI 

applications in environmental assessment and HVAC control. However, SKPIs can extend to 

other domains requiring indoor environmental sensing, including HVAC fault detection and 

diagnosis, building energy management, building commissioning, building certifications, and 

building energy flexibility using adaptive temperature setpoints.  

The key conclusions of this study are as follows: 

− Significant inconsistency exists across the literature in survey design, survey deployment and 

SKPI computation strategies, even for the same application purpose. This inconsistency 

manifests in the selection of IEQ factors, the design of survey questions and scales, data 

collection methods, and data aggregation strategies. However, the rationale for these variations 

is often unclear, often based on arbitrary decisions. 

− Inconsistent terminology in TQ is evident; for example, TC is often used to describe TS in the 

literature. The most commonly used items for assessing TQ are TS, TC, TA, and TP. The literature 

suggests that TQ perception consists of at least two dimensions and using at least two items, 

such as TS and TC, provides a more comprehensive assessment of TQ. However, unlike TQ, a 

clear classification of items and dimensions for IAQ does not currently exist.  

− There is no “one method fits all”; instead, the survey design, survey deployment and SKPI 

computation strategies should align with specific application goals. Hence, this study proposed 

a methodological framework to systematize SKPI development encompassing four generally 

applicable steps. 
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APPENDIX A 
Table A1. Scale formats used to measure occupant feedback on thermal sensation. Scales are coded by letters, 

with corresponding references, scale type, verbal anchor words, and associated numeric values. 

Scales  A  B  C  D  E  F G  H 

Ref. [1–6] [7–10] [11,12] [13] [14] [15] [16] [17] 

Scale 

type 
GRS/LS GRS/LS GRS/LS LS GRS LS LS VAS 

No. of 

Verbal 
anchor 

words 

9-point 7-point 5-point 11-Point 
7- 

Point 
13-Point 13-Point 3-Point 

 

Numeric 

value 
Verbal Anchor Words of the corresponding scales in each column 

-6      
So cold I am 

helpless 

Unbearably 

cold 
 

-5    

Completely 

Certain Cold 

 

 Numb with cold 
Extremely 

cold 

The 

coldest I 

have 

ever 

been 

-4 
Very 

cold 
-    Very cold Very cold  

-3 Cold Cold   Cold Cold Cold  

-2 Cool Cool Very cold   
Uncomfortably 

cold 
Cool  

-1 
Slightly 

cool 

Slightly 

cool 
Cold   

Cool but fairly 

comfortable 
Slightly cool  

0 Neutral Neutral 

Neither 

cool nor 

warm 

Uncertain  Comfortable Neutral 

Neither 

cold nor 

warm 

1 
Slightly 

warm 

Slightly 

warm 
Warm   

Warm but fairly 

comfortable 

Slightly 

warm 
 

2 Warm Warm Very hot   
Uncomfortably 

warm 
Warm  

3 Hot Hot   Hot Hot Very hot  

4 Very hot -    Very hot 
Extremely 

hot 
 

5    

 

Completely 

Certain 

Warm 

 
Almost as hot 

as I can stand 

Unbearably 

hot 

The 

hottest I 

have 

ever 

been 

6      

So hot I am 

sick and 

nauseated 

Unbearably 

cold 
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Table A2. Scale formats used to measure occupant feedback on thermal comfort. Scales are coded by letters, with corresponding references, scale type, verbal anchor words, and 

associated numeric values. Linear transformations are applied to some original scales in the literature to fit the table. 

Scales A B C D E F G H I J K L M 

Ref. [18–23] [24] [9] [25] [26] [27,28]  [29] [30] [31] [32] 
[33,34

] 

[35,36

] 
[37] 

Scale type GRS/LS GRS GRS VAS VAS LS GRS GRS GRS GRS GRS GRS LS 

No. of Verbal 

anchor words 
6-point 7-point 5-point 4-point 4-point 5-point 7-point 4-point 4-point 6-point 4-point 5-point 4-point 

 

Numeric 

value 
Verbal Anchor Words of the corresponding scales in each column 

4 

Very 

Comforta

ble 

          

Extrem

ely 

uncom
fortabl

e 

 

3  
Very 

comfortabl

e 

 
Clearly 

comfortabl

e 

  
Very 

comfortabl

e 

  
Very 

comfor

table 

Very 

uncom

fortabl

e 

Very 

uncom

fortabl

e 

Very 

Uncom

fortabl

e 

2 
Comforta

ble 

Comfortabl

e 
   

Very 

comforta

ble 

Comfortabl

e 
  

Fairly 

comfor

table 

Uncom

fortabl

e 

Uncom

fortabl

e 

Uncom

fortabl

e 

1  
Slightly 

Comfortabl

e 

Comfortable  
Very 

Comforta

ble 

Comforta

ble 

Slightly 

comfortabl

e 

 Comfortabl

e 

Slightly 

comfor

table 

Slightly 

uncom
fortabl

e 

Slightly 

uncom
fortabl

e 

Slightly 

Uncom
fortabl

e 

0 + 

Just 

comforta

ble 

Not 

uncomfort

able 

Indifference/ 

Not 

uncomfortable 

Just 

comfortabl

e 

just 

comforta

ble 

Neutral 
Indifferenc

e 
comfort 

Slightly 

comfortabl

e 

Just 

comfor

table 

Comfor

table 

Comfor

table 
Not 

Uncom
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Scales A B C D E F G H I J K L M 

0 - 

Just 

uncomfor

table 

Just 

uncomfort

able 

Just 

uncomfor

table 

Slightly 

uncomfort

able 

 fortabl

e 

-1  
Slightly 

uncomfort

able 

Slightly 

uncomfortable 
 

Very 

uncomfor

table 

Uncomfor

table 

Slightly 

uncomfort

able 

Rather 

discomf

ort 

Uncomfort

able 

Slightly 

Uncom

fortabl

e 

   

-2 
Uncomfo

rtable 

Uncomfort

able 
Uncomfortable   

Very 

Uncomfor

table 

Uncomfort

able 

Discomf

ort 
 

Fairly 

Uncom

fortabl

e 

   

-3  
Very 

Uncomfort

able 

Very 

Uncomfortable 

Clearly 

Uncomfort

able 

  
Very 

Uncomfort

able 

Very 

discomf

ort 

 

Very 

Uncom

fortabl

e 

   

-4 

Very 

uncomfor

table 
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Table A3. Scale formats used to measure occupant feedback on thermal acceptance. Scales are coded by letters, with 

corresponding references, scale type, verbal anchor words, and associated numeric values. Linear transformations are 

applied to some original scales in the literature to fit the table. 

Scales   A  B  C D  E  F  G  H  I  J 

Ref. [38] [25] [39] [40] [41] [42] [10] [24] [29,36] 
[2

8] 

Scale type OS VAS GRS VAS VAS GRS NS VAS LS NS 

No. of 

Verbal 

anchor 

words 

4-point 4-point 4-point 4-point 
2-

point 
4-point 2-point 4-point 4-point 

2-
po

int 

 

Numeric 

value 
Verbal Anchor Words of the corresponding scales in each column 

2      
Totally 

accepta

ble 

    

1 
Accepta

ble 

Clearly 

accepta

ble 

Acceptabl

e 

Very 

accepta

ble 

Accep

table 

Just 

accepta

ble 

Generally 

acceptabl

e 

Completel

y 

acceptabl

e 

Very 

accept

able 

Ye

s 

0- 

Slightly 

accepta

ble 

Just 

accepta

ble 

Just 

acceptabl

e (+0.01) 

Just 

accepta

ble 

   
Just 

acceptabl

e 

Just 

accept

able 
No 

0+ 

Slightly 

unaccep

table 

Just 

unaccep

table 

Just 

unaccepta

ble (-0.01) 

Just 

unacce

ptable 

   
Just 

unaccepta

ble 

Just 

unacce

ptable 

-1 
Unaccep

table 

Clearly 

unaccep

table 

unaccepta

ble 

Very 

Unacce

ptable 

Not 

accep

table 

Just 

unaccep

table 

Generally 

Unaccept

able 

completel

y 

unaccepta

ble 

Very 

unacce

ptable 

 

-2      
Totally 

unaccep

table 

    

 

Table A4. Scale formats used to measure occupant feedback on thermal satisfaction. Scales are coded by letters, with 

corresponding references, scale type, verbal anchor words, and associated numeric values 

Scales  A B  C  D 

Ref. [38] [30] [43] [44] 

Scale type LS GRS LS LS 

No. of Verbal anchor words 7-Point 4-Point 2-Point 5-point 

 

Numeric value Verbal Anchor Words of the corresponding scales in each column 

3 Very satisfied    

2 Satisfied   Satisfied 

1 Somewhat satisfied Clearly satisfied Satisfied 
Somewhat 

satisfied 

0+ 
Neutral 

Just Satisfied Not 

satisfied 
Neutral 

0 - Just dissatisfied 
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Scales  A B  C  D 

-1 Somewhat dissatisfied Clearly dissatisfied  
Somewhat 

dissatisfied 

-2 Dissatisfied   Dissatisfied 

-3 Very dissatisfied    

Table A5. Scale formats used to measure occupant feedback on thermal pleasure. Scales are coded by letters, with 

corresponding references, scale type, verbal anchor words, and numeric values. 

Scales  A B 

Ref. [25,45] [46] 

Scale type GRS/LS GRS 

No. of Verbal anchor words 7-point 3-point 

 

Numeric value Verbal Anchor Words of the corresponding scales in each column 

3 Very pleasant Pleasant 

2 Pleasant  

1 Slightly pleasant  

0 Indifferent Neutral 

-1 Slightly unpleasant  

-2 Unpleasant  

-3 Very unpleasant Unpleasant 

 

Table A6. Scale formats used to measure occupant feedback on thermal preference. Scales are coded by letters, with 
corresponding references, scale type, verbal anchor words, and associated numeric values. Linear transformations are 

applied to some original scales in the literature to fit the table. 

Scales   A  B  C D 

Ref. [47]  [8,9,32,36,40,43]  [34,48] [49,50] 

Scale type LS LS LS/GRS LS/GRS 

No. of Verbal anchor words 2-point 3-point 7-point 5-point 

  

Numeric value Verbal Anchor Words of the corresponding scales in each column 

3   Much warmer  

2   Warmer 
Much 

warmer 

1 
Want 

warmer 
Want warmer Slightly warmer Warmer 

0  No change No change - Neither warmer nor cooler 
No 

change 

-1 
Want 

cooler 
Want cooler Slightly cooler Cooler 

-2   Cooler 
Much 

cooler 

-3   Much cooler  
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Table A7. Scale Formats Used to Measure Occupant Feedback on Thermal Tolerance. Scales are coded by letters, with 

corresponding references, scale type, verbal anchor words, and associated numeric values. 

 

Table A8. Scale formats used to measure occupant feedback on overall IAQ sensation. Scales are coded by letters, with 

corresponding references, scale type, verbal anchor words, and associated numeric values. Linear transformations are 

applied to some original scales in the literature to fit the table. 

Scales  A  B  C  D  E  F 

Ref. [52] [53] [54] [55] [56] [57] 

Scale type LS LS LS LS VAS LS 

No. of Verbal anchor words 5-point 3-point 4-point 4-point 2-point 3-point 

 

Numeric value Verbal Anchor Words of the corresponding scales in each column 

2 Very good Excellent 
Very good 

 
 Excellent  

1 Good  Good Very good  Good 

0 + 

General Neutral Moderate 

Fairly 

good 
 Acceptable 

0 - 
Fairly 

poor 

-1 Bad  Bad Very poor  Bad 

-2 Very Bad Terrible Very Bad  Bad  

Table A9. Scale formats used to measure occupant feedback on specific IAQ sensation. Scales are coded by letters, with 

corresponding references, scale type, verbal anchor words, and associated numeric values. 

Scales   A B  C  D  E 

Ref. [58] [24,59,60]  [59–62]  [8,59,60] 

Scale type NS LS / GRS LS / GRS LS / GRS 

No. of Verbal anchor words 
2-

point 
7-point 7-point 6-point 7-point 

 

Numeric value Verbal Anchor Words of the corresponding scales in each column 

3  Very Dry Very fresh  
Much Too 

humid 

2  Dry Fresh  Very humid 

Scales   A  B 

Ref. [51] [43] 

Scale type LS NS 

No. of Verbal anchor words 5-point 2-point 

 

Numeric value Verbal Anchor Words of the corresponding scales in each column 

0 Perfectly tolerable Not tolerable 

1 Slightly difficult to tolerate Tolerable 

2 Fairly difficult to tolerate  

3 Very difficult to tolerate  

4 Intolerable  
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Scales   A B  C  D  E 

1 Yes Slightly Dry Rather fresh  Slightly humid 

0 No Neutral Neutral No Odor Just right 

-1  Slightly humid/wet Rather stuffy Slightly Odor Slightly dry 

-2  humid/wet Stuffy Moderate Odor Very dry 

-3  Very humid/Wet Very Stuffy Strong Odor Much Too dry 

    Very strong Odor  

    Overpower Odor  

Table A10. Scale formats used to measure occupant feedback on IAQ satisfaction. Scales are indicated by letters, with 

corresponding references, scale type, verbal anchor words, and associated numeric values. 

Scales  A  B  C  D  E F 

Ref. [63] [64] [65] [61,66–72]       [73,74] [75] 

Scale type LS LS LS LS VAS GRS 

No. of Verbal 

anchor words 
5-point 4-point 5-point 7 -Point 4-point 6-point 

 

Numeric value Verbal Anchor Words of the corresponding scales in each column 

3    Very satisfied  
Strongly 
satisfie

d 

2 Very satisfied  Very 

satisfied 
Satisfied   

1 
Slightly 

satisfied 
Satisfied Satisfied Slightly satisfied 

Strongly 

satisfied 

Satisfie

d 

+ 0 

 

 Satisfied 
Slightly 

unsatisfied 
Neutral 

Neither satisfied Nor 

dissatisfied 

(0.05) Just 

satisfied 

Just-

Satisfie

d      Just 
-

Dissatis

fied - 0 
(-0.05) just 

dissatisfied 
 

-1 
Slightly 

unsatisfied 
Unsatisfied Dissatisfied Slightly dissatisfied 

Strongly 

dissatisfied 

Dissatis

fied 

-2 
Very 

Unsatisfied 
 Very 

dissatisfied 
Dissatisfied   

-3    Very dissatisfied  
Strongly 

dissatisf

ied 
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Table A11. Scale formats used to measure occupant feedback on IAQ acceptance. Scales are indicated by letters, with 

corresponding references, scale type, verbal anchor words, and associated numeric values. Linear transformations are 

applied to some original scales in the literature to fit the table. 

Scales  A  B  C 

Ref. [20,59,76]  [24] [60] 

Scale type VAS GRS VAS 

No. of Verbal anchor words 4-point 4-point 2-point 

 

Numeric value Verbal Anchor Words of the corresponding scales in each column 

1 Clearly acceptable Completely acceptable Acceptable 

0+ 

 

0- 

Just acceptable Just acceptable  

Just not acceptable Just unacceptable  

-1 Clearly not acceptable Completely unacceptable Not acceptable 

Table A12. Categories of symptoms and their corresponding examples, [59,77–82] 

Category Symptoms 

Respiratory 
 

Cough, Sneezing, Shortness of breath, Wheezing, Chest tightness, Nasal symptoms (irritation, itching, 

stuffy or runny nose, burning) 
 

Dermal 
 

Dry skin, Rash, Irritated and flushed facial skin, Scaling or itching scalp, Hands dry, itching, red skin 

General 

Fatigue, feeling heavy-headed, Headache, Nausea/dizziness, Difficulty concentrating, Fever or chills, 

Joint pain, Muscle pain, Malaise, Irritability, Lack of concentration, upset stomach, Difficulty remembering 

things, Depression, Heartburn, Hyperventilation 

Eye Eye irritation, Dry, itching, or irritated eyes, Tired or strained eyes, Redness of the eyes 

Throat Sore throat, Hoarse or dry throat, Smarting of the throat, Throat irritation 
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