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Introduction on Living Lab: PULSE Core

• Mission
• Creating the most sustainable, efficient & healthy working and living 

environments for today and future generations using data. 

• Vision
• We are the heart of future-proof buildings and their users with data as fuel 

for the sustainability and efficiency of healthy buildings. In doing so, we 
add value for the owner and the users

• - BUILDING VALUE -
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Introduction on Living Lab: PULSE Core

Introduction on Living Lab: PULSE Core

PULSE CORE as the basis for our asset 
management landscape:
• Data driven asset management
• Continuous commissioning 
• Condition based maintenance

Performance 
contract

Hour effort contract

“Software as a Service” 

3. 
SUMMIT

2. SMART

1. START

Performance guarantee

Performance advice

Performance insights
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Introduction on Living Lab: PULSE Core

>900
Buildings connected

>5 M
m2

280 K
Ton CO²

>250
Strategic customers

>120 K
Sensors

>60 B
measure values

360 K
BMS notifications / year

>4500 
Users 

Tilburg University
Eindhoven airport

Carmel college

Van Gogh Museum NIKHEF

PGGM

TNO Philips

Altrecht

KLM (4AMS) Kromhout Kazerne

High Tech Campus

The current situation and future ambition

Raw database

Semantic data 
model

FD algorithms 
and models

Dashboarding, 
KPIs and alerts

Domain 
experts

Action in operation

Missing 
sensors

Advanced 
models

Automated 
action in 
operation
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• Missing sensors:
• Prediction missing sensor values using models
• Enables more FD(D) analysis in sensor poor environments
• Better fault prioritisation based on impact

• Advanced models
• Anomaly detection on available sensors
• Future predictions

• Automated action in operation
• Expansion of current FD with additional symptoms to FDD
• Enables automated integration into operational (maintenance) process

• SPIE: Shorter time to action, lower costs and higher service level
• Customer: Less disturbance, higher availability

• One of the solutions to close the gap in shortage of skilled personnel

The current situation and future ambition

Virtual sensors and advanced symptoms

M

Missing sensors:

• Temperatures water distribution

• Energy flows

• Temperature and humidity in AHU

Anomaly detection:

• Energy consumption (profiles)

• Energy savings

• Component faults

Future predictions:

• Contract capacity exceedance

• Expected energy consumption profile
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Virtual sensors and advanced symptoms

Model approaches investigated

• Missing sensors: 
• No data for prediction value
• Physical models

• Anomaly detection:
• Data for prediction value
• Both physical and data driven approach

• Future predictions
• High level predictions (on building level)
• Data driven approach

Virtual sensors and advanced symptoms

Missing sensors example: chiller cooling power
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Virtual sensors and advanced symptoms

Missing sensors example: chiller cooling power

Virtual sensors and advanced symptoms

Missing sensors example: ahu
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Virtual sensors and advanced symptoms

Missing sensors example: ahu

Virtual sensors and advanced symptoms

Missing sensors example: ahu
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Virtual sensors and advanced symptoms

Missing sensors conclusions:

• Physical approach

• Storing design params in semantic data model makes approach replicable / scalable

• System level is hard because of different configurations and control strategies: advice to 
use (sub) component level

• On component level it is easy 

Virtual sensors and advanced symptoms

• Fitting uncertainty 

• 2 outputs, mean, std

• Special loss function

• What is really an anomaly. 

• SHAP-values for better interpretation

Loss = log(σ²) + ((y - μ)²) / σ² 

Anomaly detection: AHU (neural network):
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Virtual sensors and advanced symptoms

Training phase
• Step 1: selection of input features: 30 => 21
• Step 2: hypertuning neural network
• Step 3: training the network 
• Step 4a: trainingsreport
• Step 4b: store selection and trained model

Anomaly detection: AHU (neural network):

Virtual sensors and advanced symptoms

Shap values
• Effect of each feature on the prediction
• Verify if those values are logical

Anomaly detection: AHU (neural network):
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Virtual sensors and advanced symptoms

Operational phase
• Use Neural Network to predict mean 

and std. 
• Measured value vs Predicted value
• Flag 

• 0    : values < 2std
• 0-1 : values between 2 and 3std
• 1 : values above 3std

• Averaged (running mean) => 
symptom

Anomaly detection: AHU (neural network):

Virtual sensors and advanced symptoms

Anomaly detection: AHU cooling valve (ML)
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Virtual sensors and advanced symptoms

Anomaly detection: AHU fan power (ML)

0,0kW

0,5kW

1,0kW

1,5kW

2,0kW

2,5kW

361 461 561 661 761 861 961 1061 1161 1261

LBK kantine - Vent toe - vermogen LBK kantine - Vent toe - Random forest model vermogen

Input variables MSE RMSE MAE R2
Omloopklep toev.plaatw. (percentage) - Omloopklep 
 
PID toerenregelaar toevoervent. berekende waarde -
  

 Druk toevoerkanaal - 332PT1
Status

0,001 0,034 0,008 0,999

PID toerenregelaar toevoervent. berekende waarde - 0,005 0,069 0,013 0,996PID toerenregelaar toevoervent. berekende waarde -
Status 0,005 0,069 0,013 0,996
PID toerenregelaar toevoervent. berekende waarde -

 Druk toevoerkanaal - 332PT1
Status

0,004 0,062 0,012 0,996

PID toerenregelaar toevoervent. berekende waarde -
 Druk toevoerkanaal - 332PT1

 Status
0,001 0,035 0,009 0,999

 Inblaastemperatuur - 332TT4PID toerenregelaar 
toevoervent. berekende waarde -Druk toevoerkanaal 

 - 332PT1
 Status

Omloopklep toev.plaatw. (percentage) - Omloopklep 
 

0,001 0,034 0,008 0,999

 Inblaastemperatuur - 332TT4PID toerenregelaar 
toevoervent. berekende waarde -Druk toevoerkanaal 

 - 332PT1

Omloopklep toev.plaatw. (percentage) - Omloopklep 
 

0,001 0,032 0,008 0,999

Virtual sensors and advanced symptoms

Anomaly detection: energy demand
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Virtual sensors and advanced symptoms

Anomaly detection: energy demand

Virtual sensors and advanced symptoms

Anomaly detection: AHU valve positions (physical model)
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Virtual sensors and advanced symptoms

Anomaly detection: AHU valve positions (physical model)

Virtual sensors and advanced symptoms

Anomaly detection: AHU valve positions (physical model)
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Virtual sensors and advanced symptoms

Anomaly detection conclusions:

• Selecting input features based on semantic data model makes approach replicable / 
scalable, but not 100% accurate. 

• 80% can be automated, last 20% needed for final feature selection and data quality checks. 
Create good supportive apps to make this easy for users.

• Physical approach on system level becomes quickly complex, but combining multiple small 
models is powerful.

• Boosted Decision Trees are powerful in cases where prediction values have a specific range 
(eg valve 0-100%).

• When prediction ranges are expected to change over time and are not present in training 
data other methods which derive relations might have better performance.

• Smart implementation of (simple) linear regression is in a lot of cases also performing well. 

• Neural Networks can be used as 1 model for multiple sensors and detect anomalies on 
them. This comes with computational penalty.

Virtual sensors and advanced symptoms
Future prediction: electrical power of a campus
• Challenges:

• Big campus with multiple building types (offices, production)
• No insight in occupants, production numbers

• High accuracy on complete profile is easy, high accuracy on peaks is harder
• Alternative approach than timeseries forecasting; ensemble model (linear regression and boosted 

decision trees)
• Features:

• Short term historical energy consumption params
• Weather forecast
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Virtual sensors and advanced symptoms

Future predictions conclusions:

• Data driven approach

• Performance is good

• Added value proven and confirmed by customers

• Pilot phase where multiple questions are open:
• Performance of timeseries forecasting with forecasting variables as input
• Scalability and replicability

Fault detection and diagnosis

Diagnostic Bayesian networks:

• Calculate probabilities for each diagnose

• Model definition:
• Prior probabilities
• Conditional probabilities (relation between symptom 

and diagnosis)

Rule based:

• Detect what will be the most logical diagnosis

• Model definition:
• Define for each possible diagnosis what is /are the 

combination of symptom states
• Ideally each diagnosis has each own unique 

combination of symptom states
• Practically this is not the case, a leaf can have 

multiple diagnosis
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Fault detection and diagnosis

FDD using DBN: AHU

Fault detection and diagnosis

FDD using DBN: AHU
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Fault detection and diagnosis

FDD using DBN: AHU
Fault probabilities and symptom states for 1 month:
1. Reported failure: stuck heating coil valve and broken valve actuator, temporary fix
2. Replaced valve actuator

Fault detection and diagnosis

DBN conclusions:
• Failure probabilities have high added value 
• No labelled data sets means that DBN can only be defined by 

experts; difficult process. 
• Not flexible to fit different situations; our test show it is not easy to 

adjust a “master“ version model:
• Symptom states that cannot be calculated
• Different system configurations or controls

• Symptom threshold definition: when should a symptom change its 
state?

• Absolute threshold and duration
• Impact of model reliability
• Local characteristics
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Fault detection and diagnosis

FDD using rule based: AHU

Fault detection and diagnosis

FDD using rule based: distribution group
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Fault detection and diagnosis

Rule based conclusions:

• Single diagnosis is a drawback

• Easier to define using expert knowledge but harder to define 
complex systems

• (Sub) component approach is promising, but translation to 
system level is still work in progress

• (Sub) component approach gives flexibility toward different 
system configuration.

• Symptom threshold definition: same challenges as in DBN 
approach

Challenges / opportunities

• Balance between scalability / replicability and reliability
• Focus: on specific type building (office buildings), specific system types
• Data model for whole life cycle
• Remaining manual work should be as easy as possible, supported by specific 

apps

• Symptom tuning
• Automate based on model performance parameters

• Data is not labelled
• Backward engineering: created labelled datasets based by historical FDD analysis
• Failure definition in operational process
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Conclusions and further work

• End 2 end test containing:
• Anomaly detection and missing sensors, combination of:

• ML models
• simple physical models

• FDD: rule-based approach on subcomponent level (aim for 
80% most common failure)

• Focus: AHU and (mixing) valves
• Automated integration in operational process

• Energy forecasting
• Generic approach on office buildings

• Predictive maintenance
• Vibration sensors on rotating equipment (chillers and 

fans); time domain evaluation 

Questions

Thank you for your attention!

Any questions?
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