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Introduction on Living Lab: PULSE Core @B

* Mission
* Creating the most sustainable, efficient & healthy working and living
environments for today and future generations using data.

* Vision
* We are the heart of future-proof buildings and their users with data as fuel
for the sustainability and efficiency of healthy buildings. In doing so, we
add value for the owner and the users

* - BUILDING VALUE -

V.
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Introduction on Living Lab: PULSE Core @;’EB
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Introduction on Living Lab: PULSE Core @DEB

PULSE CORE as the basis for our asset
i management landscape:

» Data driven asset management
* Continuous commissioning
* Condition based maintenance

Performance
contract Performance guarantee
Hour effort contract Performance advice

A A
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Introduction on Living Lab: PULSE Core @:BB

% Tilburg University

Van Gogh Museum - NIKHEF
AL ilips
g

>900

Buildings connected

>5 M

>120 K

Sensors

>250

Strategic customers

280 K 360 K S
Ton CO, BMS notifications / year -
@ altrecht Altrecht n Carmel college

>4500

Users

>60 B

measure values

ll. |
9

High Tech Campus & PGGM |

BRAINS 4

The current situation and future ambition
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The current situation and future ambition

* Missing sensors:
* Prediction missing sensor values using models
* Enables more FD(D) analysis in sensor poor environments
* Better fault prioritisation based on impact

* Advanced models
* Anomaly detection on available sensors
* Future predictions

* Automated action in operation
* Expansion of current FD with additional symptoms to FDD
* Enables automated integration into operational (maintenance) process
« SPIE: Shorter time to action, lower costs and higher service level
* Customer: Less disturbance, higher availability
* One of the solutions to close the gap in shortage of skilled personnel
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Virtual sensors and advanced symptoms
Yo §
&
Y &

8

"z,

+ Temperatures water distribution  Energy consumption (profiles)

* Energy flows * Energy savings

* Temperature and humidity in AHU * Component faults
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Missing sensors: Anomaly detection: Future predictions:

« Contract capacity exceedance

@
BUILDINGS

* Expected energy consumption profile
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Virtual sensors and advanced symptoms ﬁb

Model approaches investigated

N+ Missing sensors:

— * No data for prediction value

* Physical models

ff * Anomaly detection:

B » Data for prediction value

* Both physical and data driven approach

N« Future predictions

* High level predictions (on building level)
» Data driven approach

n A

Virtual sensors and advanced symptoms @

j\f Missing sensors example: chiller cooling power
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Virtual sensors and advanced symptoms

j\/ Missing sensors example: chiller cooling power
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Virtual sensors and advanced symptoms

\ﬁ Missing sensors example: ahu
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Virtual sensors and advanced symptoms

j\/ Missing sensors example: ahu
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Virtual sensors and advanced symptoms

\ﬁ Missing sensors example: ahu
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Virtual sensors and advanced symptoms @

j\[ Missing sensors conclusions:

* Physical approach
» Storing design params in semantic data model makes approach replicable / scalable

» System level is hard because of different configurations and control strategies: advice to
use (sub) component level

* On component level it is easy

A

17

Virtual sensors and advanced symptoms @

w Anomaly detection: AHU (neural network):

* Fitting uncertainty
* 2 outputs, mean, std
* Special loss function

n(z)

Loss = log(0?) + ((y - p)?)/ 0% “

* What is really an anomaly.
« SHAP-values for better interpretation

18
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Virtual sensors and advanced symptoms ﬁb

\d Anomaly detection: AHU (neural network):

Training phase

» Step 1: selection of input features: 30 => 21
» Step 2: hypertuning neural network

 Step 3: training the network

» Step 4a: trainingsreport

» Step 4b: store selection and trained model

19

Virtual sensors and advanced symptoms @

ﬁ Anomaly detection: AHU (neural network):

Shap values
» Effect of each feature on the prediction
 Verify if those values are logical

- AR - -

T
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Virtual sensors and advanced symptoms @:IJ)B

\ﬁ Anomaly detection: AHU (neural network):

Operational phase
* Use Neural Network to predict mean
and std.
* Measured value vs Predicted value , )
* Flag [ -
0 : values < 2std
. 01 : values between 2 and 3std
e 1 : values above 3std l
* Averaged (running mean) =>

symptom

21

Virtual sensors and advanced symptoms @

[N Anomaly detection: AHU cooling valve (ML)
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-20
——PID afsluiter koeler berekende waarde - Afsluiter (mean) —— Random Forest 1 (1)
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L Anomaly detection: AHU fan power (ML)
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L Anomaly detection: energy demand
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Virtual sensors and advanced symptoms

\ﬁ Anomaly detection: energy demand
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Virtual sensors and advanced symptoms
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ﬁ Anomaly detection: AHU valve positions (physical model)
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Virtual sensors and advanced symptoms ﬁb

\ﬁ Anomaly detection: AHU valve positions (physical model)
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Virtual sensors and advanced symptoms @

ﬁ Anomaly detection: AHU valve positions (physical model)
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Virtual sensors and advanced symptoms @

I

Anomaly detection conclusions:

* Selecting input features based on semantic data model makes approach replicable /
scalable, but not 100% accurate.

* 80% can be automated, last 20% needed for final feature selection and data quality checks.
Create good supportive apps to make this easy for users.

* Physical approach on system level becomes quickly complex, but combining multiple small
models is powerful.

* Boosted Decision Trees are powerful in cases where prediction values have a specific range
(eg valve 0-100%).

* When prediction ranges are expected to change over time and are not present in training
data other methods which derive relations might have better performance.

* Smart implementation of (simple) linear regression is in a lot of cases also performing well.

* Neural Networks can be used as 1 model for multiple sensors and detect anomalies on
them. This comes with computational penalty.

29

Virtual sensors and advanced symptoms @

[N

Future prediction: electrical power of a campus

* Challenges:
« Big campus with multiple building types (offices, production)
* No insight in occupants, production numbers
* High accuracy on complete profile is easy, high accuracy on peaks is harder

* Alternative approach than timeseries forecasting; ensemble model (linear regression and boosted
decision trees)

* Features:
* Shortterm historical energy consumption params
* Weather forecast

Prediction versus feal values

30
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/\jk : Future predictions conclusions:

* Data driven approach
* Performance is good

* Scalability and replicability

Virtual sensors and advanced symptoms

Added value proven and confirmed by customers

Pilot phase where multiple questions are open:
* Performance of timeseries forecasting with forecasting variables as input

BRAINS 4
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Diagnostic Bayesian networks:
» Calculate probabilities for each diagnose
* Model definition:

* Prior probabilities

* Conditional probabilities (relation between symptom
and diagnosis)

Fault detection and diagnosis

Rule based:
* Detect what will be the most logical diagnosis
* Model definition:

Root node
J(Attribute)

Define for each possible diagnosis what is /are the
combination of symptom states

Ideally each diagnosis has each own unique
combination of symptom states

Practically this is not the case, a leaf can have
multiple diagnosis

32
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Fault detection and diagnosis

r b
st | et | et | et et ment Peseer |

1 i I |
Fault probabilities based on symptom states

33

Fault detection and diagnosis
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Fault detection and diagnosis @B

/.- FDD using DBN: AHU

Fault probabilities and symptom states for 1 month:
1. Reported failure: stuck heating coil valve and broken valve actuator, temporary fix
2. Replaced valve actuator

35

Fault detection and diagnosis @

DBN conclusions:
* Failure probabilities have high added value

* No labelled data sets means that DBN can only be defined by
experts; difficult process.

* Not flexible to fit different situations; our test show it is not easy to
adjust a “master” version model:
* Symptom states that cannot be calculated
» Different system configurations or controls

. Symp’;com threshold definition: when should a symptom change its
state’
» Absolute threshold and duration
* Impact of model reliability
* Local characteristics

V.
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Fault detection and diagnosis

= .~ FDD using rule based: AHU
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Fault detection and diagnosis

f‘i/g% FDD using rule based: distribution group
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Fault detection and diagnosis @B

Rule based conclusions:
* Single diagnosis is a drawback

* Easier to define using expert knowledge but harder to define
complex systems

* (Sub) component approach is promising, but translation to
system level is still work in progress

* (Sub) component approach gives flexibility toward different
system configuration.

* Symptom threshold definition: same challenges as in DBN

approach |
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Challenges / opportunities @B

* Balance between scalability / replicability and reliability
* Focus: on specific type building (office buildings), specific system types
* Data model for whole life cycle
* Remaining manual work should be as easy as possible, supported by specific
apps

* Symptom tuning
* Automate based on model performance parameters

* Data is not labelled
» Backward engineering: created labelled datasets based by historical FDD analysis
* Failure definition in operational process

V.
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Conclusions and further work

* End 2 end test containing;:
* Anomaly detection and missing sensors, combination of:
* ML models
* simple physical models
* FDD: rule-based approach on subcomponent level (aim for
80% most common failure)

* Focus: AHU and (mixing) valves
* Automated integration in operational process

* Energy forecasting
* Generic approach on office buildings

* Predictive maintenance

* Vibration sensors on rotating equipment (chillers and
fans); time domain evaluation
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Questions

Thank you for your attention!

Any questions?

@
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