

REAL-TIME MONITORING OF BUILDING ENERGY SYSTEMS:

Bayesian Network-based Fault Detection and Diagnosis of an Air-handling Unit in a Dutch University Building

Lars van Koetsveld van Ankeren

October 31st

Brains4Buildings Webinar

PROBLEM STATEMENT

- Buildings account for 40% of European energy consumption [1]
- EU aim: 60% reduction in 2030; fully decarbonised in 2050 [2]

PROBLEM ANALYSIS

- 50% energy to heating, ventilation and air-conditioning (HVAC) systems [3]
- Faults in HVAC systems can cause up to 30% energy waste [4]
- Need for fault detection and diagnosis (FDD) methods
	- Lack of adoption of FDD methods in practice [5]
	- Little research on real-time implementation [5]

RESEARCH AIM

- Real-time diagnosis of air-handling units (AHUs)
- Important part of most HVAC systems
- Large energy consumption within HVAC system [6]

Figure 1: Air-handling unit example

RESEARCH QUESTIONS

Alternative to data-driven method: Bayesian network-based FDD

o How to transfer expert knowledge to a probabilistic network?

- Which faults appear frequently in AHUs?
- How can diagnosis be performed in real-time?

RESEARCH QUESTION

'How can Bayesian network-based fault diagnosis accurately find faults for

air-handling units in real-time based on expert knowledge?'

CONTENTS

- ❑ Case study description
- ❑ Diagnosis model
- ❑ Results
	- **Experimental data**
	- **■** Historical data
	- Real-time data
- ❑ Sustainability implications
- ❑ Conclusion

CASE STUDY DESCRIPTION

- AHU overview
- Scope

AHU OVERVIEW

AHU OVERVIEW

- Pressure setpoints
- Temperature setpoint
- Outdoor temperature
- \blacksquare Alerts

Figure 3: Case study control panel (by Johnson Controls)

SCOPE

- **Diagnosis during operation hours**
- Focus on winter season, cooling coil
	- not considered

Figure 4: AHU operation schedule

FDD MODEL

- 4S3F framework
- Faults and symptoms
- Diagnostic Bayesian network
- Symptom thresholds

FOUR SYMPTOMS THREE FAULTS (4S3F) FRAMEWORK

- Four symptom types and three fault types
- Separates symptom detection from fault diagnosis [8]
- Fault inference with diagnostic Bayesian network (DBN)

Component Fault Fan_s, fan_r Failure **DIAGNOSED FAULTS** Filter, filter, Leakage Fouling Heating coil Failure Leakage ■ 27 AHU faults, based on literature **ERW** Failure $Damper_s$ Stuck closed P_s sensor, P_r sensor Failure ■ Control faults: T_i, T_p, T_s, T_{re} combined **Bias** T_i , T_p , T_s , T_r and T_e Failure o Incorrect setpoint or control signal Control Fault Temperature setpoint Setpoint set incorrectly ■ Component faults: P_s setpoint, P_r setpoint Setpoint set incorrectly o Sensor bias and failure **ERW** control Incorrect control signal o Component failure, leakage or fouling **HCV** control Incorrect control signal Fan_s control, fan_r control Incorrect control signal **Figure 6: Diagnosed faults**

DETECTED SYMPTOMS

- 35 rule-based symptoms
- **Epsilon thresholds determine** sensitivities
- Example S1:

 $|T_i - T_o| > \varepsilon_1$ $\varepsilon_1 = 1$ °C

Figure 7: Several symptom detection rules

DIAGNOSTIC BAYESIAN NETWORK

- **Conditional probability parameters**
- Top: temperature-related
- **Bottom: pressure-related**

DIAGNOSIS PARAMETERS

- Configurable diagnosis period: 1-sample up to daily diagnosis
- Symptom thresholds, improving symptom detection accuracy
	- o Total number of samples
	- o Consecutive number of samples
- Fault diagnosis threshold of 60%

RESULTS

- Experimental
- Historical
- Real-time

EXPERIMENT RESULTS

- Description of experiments
- Detected symptoms
- Diagnosed faults

DESCRIPTION OF EXPERIMENTS

- 13 experiments to validate control and sensor faults
- All conducted in March 2024
- Example: fan control experiment

Figure 9: Fan control experiment sensor data

EXPERIMENT RESULTS

- Control faults were diagnosed accurately (9/13)
- Pressure sensor fault not included (2/13)
- HC failure during HCV experiment (1/13)
- DBN could not distinguish between supply temperature sensor and HC failure faults (1/13)

Figure 10: Calculated fault probabilities for each experiment

EXPERIMENT DIAGNOSIS PERIODS

- **Five diagnosis periods**
- Diagnosis period affected number of false positives
- Trade-off between accuracy and early diagnosis

Diagnosis period	10 minutes	30 minutes	1 hour	2 hours	3 hours
Fault					
$U_{s,fan} = 30\%$	$U_{s,fan}$, T_{er} bias, $\mathrm{T}_i, \mathrm{T}_s$	$U_{s,fan}$, T_{er} bias, T_i	$U_{s,fan}, T_{er}$ bias, T_i , U_{bcv}	$U_{s,fan}$, T_{er} bias, T_i , U_{bcv}	$U_{s,fan}, T_i, U_{bcv}$
$U_{s,fan} = 70\%$	$U_{s,fan}$, U_{bcv}	$U_{s,fan}$, U_{bcv}	$U_{s,fan}, T_i, U_{bcv}$	$U_{s,fan}, T_i$	$U_{s,fan}, T_i$
$U_{\text{erw}} = 0\%$	T_{er} bias, T_p	T_{er} bias, T_p	T_{er} bias, T_p	T_{er} bias, T_i , T_p	T_{er} bias, T_i , T_p
$p_{s,set} = 235$ Pa	$p_{s, set}$	$p_{s,set}$	$p_{s,set}$	$p_{s,set}, U_{bcv}$	$p_{s,set}$
$p_{s, set} = 135 \text{ Pa}$	$U_{s,fan}, p_{s,set}, T_i$	$p_{s,set}, T_i$	$p_{s,set}, T_i$	$p_{s,set}$	$p_{s,set}$
$p_s = 130$ Pa	$U_{s,fan}$, $U_{r,fan}$, T_i , U_{bcv}	Damper _s , T_i	Damper _s , T_i	Damper _s , T_i	Damper _s , T_i
$p_s = 200 \text{ Pa}$	$U_{s,fan}$, U_{bcv}	$U_{s,fan}$, U_{bcv}	$U_{s,fan}, T_i, U_{bcv}$	$U_{s,fan}, T_i, U_{bcv}$	$U_{s,fan}, T_i, U_{bcv}$
$U_{bcv} = 0\%$	T_s , U_{bcv}	T_s , U_{bcv}	T_s , U_{bcv}	T_s , U_{bcv}	T_s , U_{bcv}
$U_{bcv} = 30\%$	U_{bcv}	U_{bcv}	U_{bcv}	U_{bcv}	U_{bcv}
$U_{bcv} = 100\%$	T_i , HC	T_i , HC	T_i , HC	T_i , HC	T_i , HC
$T_{set} = 23 \text{ °C}$	T_{set}	T_{set}	T_{set} , U_{bcv}	$\mathrm{T}_{\mathit{set}}$	T_{set}
$T_{set} = 17 \degree C$	T_{er} bias, T_p , $\mathrm{T}_{\mathit{set}}$	T_{set} , U_{hcv}	T_{set} , U_{hcv}	T_{set} , U_{bcv}	T_i, T_{set}, U_{bcv}
$T_s = 17^{\circ}$ C	T_i , U_{bcv}	T_i, U_{bcv}	T_i , U_{bcv}	T_i , U_{bcv}	T_i , HC

Figure 11: Diagnosed faults with different diagnosis periods

HISTORICAL RESULTS

- Detected symptoms

- Diagnosed faults

DETECTED SYMPTOMS

- Model was run on 506 days from 2022 and 2023, between 08:00 and 20:00
- Symptom thresholds: total = 3 ; consecutive = 2
- **Eleven symptoms detected** frequently

Figure 12: Detected symptoms in historical data

DIAGNOSED FAULTS

- Seven temperature-related faults diagnosed frequently
- Mostly control faults
- **Biases detected often**

Figure 13: Diagnosed faults in historical data

DIAGNOSED FAULTS

Figure 14: Symptoms and faults diagnosed (>10%), shown in DBN

REAL-TIME RESULTS

- Real-time diagnosis framework
- Diagnosis setup
- Diagnosis results

REAL-TIME DIAGNOSIS FRAMEWORK

- Data streaming software Kafka used to collect real-time data
- **Example 3 Stored locally in time-series database** InfluxDB
- DBN performs diagnosis on configurable period

Figure 15: InfluxDB UI

DIAGNOSIS SETUP

- Data collected between the 21st and 25th of June 2024
- Diagnosis on data from 08:00 until 20:00 on the 24th of June
- Symptom thresholds equal to setup for historical results

30 Figure 16: Symptoms and faults diagnosed for real-time data

SUSTAINABILITY IMPLICATIONS

SUSTAINABILITY IMPLICATIONS

- Historical faults with highest impact on energy usage:
	- o Lower temperature setpoint **decreases** energy usage (64% of the days considered)
	- o Incorrect HCV control fault *increases* energy usage (43% of days considered)
	- o Unstable or incorrect ERW control **increases** energy usage (11% of days considered)
- Real-time result related to energy usage:
	- o ERW used for cold recovery in addition to heat recovery

CONCLUSION

RESEARCH QUESTION

'How can Bayesian network-based fault diagnosis accurately find faults for

air-handling units in real-time based on expert knowledge?'

CONCLUSION

- The proposed method can reliably diagnose AHU control faults in real-time
- **EXTERS** However, diagnosis period of at least one hour is recommended
- **Incorrect ERW and HCV control signals frequently diagnosed**

LIMITATIONS

- The DBN relies on estimations for parameters and symptom rules
- Missing sensor data impacted historical results
- **Transient data may have caused false positive symptoms**
- Alert data missing in real-time framework

RECOMMENDATIONS FOR FUTURE RESEARCH

■ Expanding the DBN

o Summer season and outside schedule

o Efficiency estimations for the coils and fans

o Frozen sensor symptoms [8]

- **Filtering transient data [9]**
- Integrating alerts in Kafka framework
- Applying the model to different AHUs

THANK YOU

Lars van Koetsveld van Ankeren MSc

[L.vankoetsveldvanankeren@tudelft.nl](mailto:L.vankoetsveldvanankeren@student.tudelft.nl)

REFERENCES

[1] The European Parliament and the Council of the EU. "Directive 2010/31/EU of the European parliament and of the council of 19 May 2010 on the energy performance of buildings (recast)". In: Official Journal of the European Communities (2010) L153/13-35 (2010).

[2] Jessica Granderson, Guanjing Lin, Rupman Singla, Ebony Mayhorn, Paul Ehrlich, Draguna Vrabie, and Stephen Frank. "Commercial fault detection and diagnostics tools: what they offer, how they differ, and what's still needed". In: (2018).

[3] Luis Pérez-Lombard, José Ortiz, and Christine Pout. "A review on buildings energy consumption information". In: Energy and Buildings 40.3 (Jan. 2008), pp. 394–398. issn: 0378-7788. doi: 10.1016/ J.ENBUILD.2007.03.007.

REFERENCES

[4] Jessica Granderson, Guanjing Lin, Rupman Singla, Ebony Mayhorn, Paul Ehrlich, Draguna Vrabie, and Stephen Frank. "Commercial fault detection and diagnostics tools: what they offer, how they differ, and what's still needed". In: (2018).

[5] Woohyun Kim and Srinivas Katipamula. "A review of fault detection and diagnostics methods for building systems". In: Science and Technology for the Built Environment 24.1 (Jan. 2018), pp. 3–21. issn: 2374474X. doi: 10.1080/23744731.2017.1318008.

[6] Jianli Chen, Liang Zhang, Yanfei Li, Yifu Shi, Xinghua Gao, and Yuqing Hu. "A review of computingbased automated fault detection and diagnosis of heating, ventilation and air conditioning systems". In: Renewable and Sustainable Energy Reviews 161.April (2022), p. 112395. issn: 18790690. doi: 10.1016/j.rser.2022.112395. url: https://doi.org/10.1016/j.rser.2022.112395.

REFERENCES

[7] Arie Taal, Laure Itard, and Wim Zeiler. "A reference architecture for the integration of automated energy performance fault diagnosis into HVAC systems". In: Energy and Buildings 179 (2018), pp. 144– 155. issn: 03787788. doi: 10.1016/j.enbuild.2018.08.031. url: https://doi.org/10. 1016/j.enbuild.2018.08.031.

[8] Yang Zhao, Jin Wen, Fu Xiao, Xuebin Yang, and Shengwei Wang. "Diagnostic Bayesian networks for diagnosing air handling units faults – part I: Faults in dampers, fans, filters and sensors". In: Applied Thermal Engineering 111 (2017), pp. 1272–1286. issn: 13594311. doi: 10.1016/j.appltherma leng.2015.09.121.

[9] Won Yong Lee, John M. House, and Nam Ho Kyong. "Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks". In: Applied Energy 77.2 (Feb. 2004), pp. 153–170. issn: 0306-2619. doi: 10.1016/S0306-2619(03)00107-7.

MISSING DATA

Figure 17: Missing sensor data

DIAGNOSTIC BAYESIAN NETWORK

Temperature-related faults and symptoms

Figure 18: Developed DBN (top)

DIAGNOSTIC BAYESIAN NETWORK

- Pressure-related
	- faults and symptoms

Figure 19: Developed DBN (bottom)

DESCRIPTION OF EXPERIMENTS

- 13 experiments to validate control and sensor faults
- All conducted in March 2024

Figure 20: Conducted experiments

EXPERIMENT RESULTS

- Extra symptom added
- ERW control now also diagnosed correctly

Figure 21: Revised DBN (top-right part)

EXPERIMENTAL SENSITIVITY

(c) DBN containing only strong links.

(d) DBN containing only 5% prior probabilities.

47 Figure 22: Sensitivity of DBN probabilities for experimental results

HISTORICAL SENSITIVITY

Figure 21: Sensitivity of symptom thresholds for historical results

HISTORICAL SENSITIVITY

Figure 22: Sensitivity of fault threshold for historical results

- Ten temperature-related symptoms detected
- **Biases detected often**

Figure 23: Detected symptoms for real-time data

- **•** Seven temperature-related faults diagnosed
- Mostly control faults

Figure 24: Diagnosed faults for real-time data

- **Temperature data provided** validation of bias faults
- Bias symptoms are too sensitive

Figure 23: Real-time temperature data

- **ERW** used for cold recovery
- **Different from design document**
- HCV opened slightly

Figure 26: Real-time control data