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PROBLEM STATEMENT

▪ Buildings account for 40% of European energy consumption [1]

▪ EU aim: 60% reduction in 2030; fully decarbonised in 2050 [2]
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PROBLEM ANALYSIS

▪ 50% energy to heating, ventilation and air-conditioning (HVAC) systems [3]

▪ Faults in HVAC systems can cause up to 30% energy waste [4]

▪ Need for fault detection and diagnosis (FDD) methods

▪ Lack of adoption of FDD methods in practice [5]

▪ Little research on real-time implementation [5]
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RESEARCH AIM

▪ Real-time diagnosis of air-handling units 

(AHUs)

▪ Important part of most HVAC systems

▪ Large energy consumption within HVAC 

system [6]
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Figure 1: Air-handling unit example



RESEARCH QUESTIONS

▪ Alternative to data-driven method: Bayesian network-based FDD 

o How to transfer expert knowledge to a probabilistic network?

▪ Which faults appear frequently in AHUs?

▪ How can diagnosis be performed in real-time?
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RESEARCH QUESTION

‘How can Bayesian network-based fault diagnosis accurately find faults for 

air-handling units in real-time based on expert knowledge?’

6



CONTENTS 

❑ Case study description

❑ Diagnosis model

❑ Results

▪ Experimental data

▪ Historical data

▪ Real-time data

❑ Sustainability implications

❑ Conclusion

7



CASE STUDY 
DESCRIPTION 
- AHU overview

- Scope
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AHU OVERVIEW

Figure 2: Case study AHU diagram

▪ Pressure sensors

▪ Fans

▪ Temperature sensors

▪ Heating and cooling coils

▪ Energy recovery wheel (ERW)



AHU OVERVIEW
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Figure 3: Case study control panel (by Johnson Controls)

▪ Pressure setpoints

▪ Temperature setpoint

▪ Outdoor temperature

▪ Alerts 



SCOPE

▪ Diagnosis during operation hours

▪ Focus on winter season, cooling coil 

not considered
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Figure 4: AHU operation schedule



FDD MODEL 
- 4S3F framework

- Faults and symptoms

- Diagnostic Bayesian network

- Symptom thresholds



FOUR SYMPTOMS THREE FAULTS (4S3F) FRAMEWORK

▪ Four symptom types and three 

fault types

▪ Separates symptom detection 

from fault diagnosis [8]

▪ Fault inference with diagnostic 

Bayesian network (DBN)
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Figure 5: 4S3F framework [7]



DIAGNOSED FAULTS

▪ 27 AHU faults, based on literature

▪ Control faults: 

o Incorrect setpoint or control signal

▪ Component faults:  

o Sensor bias and failure

o Component failure, leakage or fouling
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Figure 6: Diagnosed faults



DETECTED SYMPTOMS

▪ 35 rule-based symptoms

▪ Epsilon thresholds determine

sensitivities

▪ Example S1: 

|Ti – To| > ε1

 ε1 = 1 ºC
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Figure 7: Several symptom detection rules



DIAGNOSTIC 
BAYESIAN NETWORK

▪ Conditional probability parameters

▪ Top: temperature-related

▪ Bottom: pressure-related

16 Figure 8: Developed DBN



DIAGNOSIS PARAMETERS
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▪ Configurable diagnosis period: 1-sample up to daily diagnosis

▪ Symptom thresholds, improving symptom detection accuracy

o Total number of samples

o Consecutive number of samples

▪ Fault diagnosis threshold of 60%



RESULTS

- Experimental

- Historical

- Real-time



EXPERIMENT RESULTS

- Description of experiments

- Detected symptoms

- Diagnosed faults



DESCRIPTION OF EXPERIMENTS
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▪ 13 experiments to validate 

control and sensor faults

▪ All conducted in March 2024

▪ Example: fan control experiment

Figure 9: Fan control experiment sensor data



EXPERIMENT RESULTS

▪ Control faults were diagnosed accurately 

(9/13)

▪ Pressure sensor fault not included (2/13)

▪ HC failure during HCV experiment (1/13)

▪ DBN could not distinguish between 

supply temperature sensor and HC 

failure faults (1/13)
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Figure 10: Calculated fault probabilities for each experiment



EXPERIMENT DIAGNOSIS PERIODS
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Figure 11: Diagnosed faults with different diagnosis periods

▪ Five diagnosis periods

▪ Diagnosis period affected number of 

false positives

▪ Trade-off between accuracy and early 

diagnosis



HISTORICAL RESULTS

- Detected symptoms

- Diagnosed faults



DETECTED SYMPTOMS

▪ Model was run on 506 days 

from 2022 and 2023, between 

08:00 and 20:00

▪ Symptom thresholds:

total = 3; consecutive = 2

▪ Eleven symptoms detected 

frequently

24

Figure 12: Detected symptoms in historical data



DIAGNOSED FAULTS

▪ Seven temperature-related 

faults diagnosed frequently

▪ Mostly control faults

▪ Biases detected often
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Figure 13: Diagnosed faults in historical data



DIAGNOSED FAULTS
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Figure 14: Symptoms and faults diagnosed (>10%), shown in DBN



REAL-TIME RESULTS

- Real-time diagnosis framework

- Diagnosis setup

- Diagnosis results



REAL-TIME DIAGNOSIS FRAMEWORK

▪ Data streaming software Kafka used to 

collect real-time data

▪ Stored locally in time-series database 

InfluxDB

▪ DBN performs diagnosis on 

configurable period
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Figure 15: InfluxDB UI



DIAGNOSIS SETUP

▪ Data collected between the 21st and 25th 

of June 2024

▪ Diagnosis on data from 08:00 until 20:00 

on the 24th of June

▪ Symptom thresholds equal to setup for 

historical results
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DIAGNOSIS RESULTS

30 Figure 16: Symptoms and faults diagnosed for real-time data



SUSTAINABILITY 
IMPLICATIONS



SUSTAINABILITY IMPLICATIONS
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▪ Historical faults with highest impact on energy usage:

o Lower temperature setpoint decreases energy usage (64% of the days considered)

o Incorrect HCV control fault increases energy usage (43% of days considered)

o Unstable or incorrect ERW control increases energy usage (11% of days considered)

▪ Real-time result related to energy usage:

o ERW used for cold recovery in addition to heat recovery 



CONCLUSION



RESEARCH QUESTION

‘How can Bayesian network-based fault diagnosis accurately find faults for 

air-handling units in real-time based on expert knowledge?’
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CONCLUSION
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▪ The proposed method can reliably diagnose AHU control faults in real-time

▪ However, diagnosis period of at least one hour is recommended

▪ Incorrect ERW and HCV control signals frequently diagnosed



LIMITATIONS

36

▪ The DBN relies on estimations for parameters and symptom rules

▪ Missing sensor data impacted historical results

▪ Transient data may have caused false positive symptoms

▪ Alert data missing in real-time framework



RECOMMENDATIONS FOR FUTURE RESEARCH
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▪ Expanding the DBN

o Summer season and outside schedule

o Efficiency estimations for the coils and fans

o Frozen sensor symptoms [8]

▪ Filtering transient data [9]

▪ Integrating alerts in Kafka framework

▪ Applying the model to different AHUs
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MISSING DATA
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Figure 17: Missing sensor data



DIAGNOSTIC 
BAYESIAN NETWORK
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Figure 18: Developed DBN (top)

▪ Temperature-related

faults and symptoms



DIAGNOSTIC 
BAYESIAN NETWORK
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Figure 19: Developed DBN (bottom)

▪ Pressure-related 

faults and symptoms



DESCRIPTION OF EXPERIMENTS

▪ 13 experiments to validate 

control and sensor faults

▪ All conducted in March 2024
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Figure 20: Conducted experiments



EXPERIMENT RESULTS

▪ Extra symptom added

▪ ERW control now also diagnosed correctly

46

Figure 21: Revised DBN (top-right part)



EXPERIMENTAL 
SENSITIVITY

47 Figure 22: Sensitivity of DBN probabilities for experimental results



HISTORICAL SENSITIVITY
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Figure 21: Sensitivity of symptom thresholds for historical results



HISTORICAL SENSITIVITY
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Figure 22: Sensitivity of fault threshold for historical results



DIAGNOSIS RESULTS
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Figure 23: Detected symptoms for real-time data

▪ Ten temperature-related 

symptoms detected

▪ Biases detected often



DIAGNOSIS RESULTS
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Figure 24: Diagnosed faults for real-time data

▪ Seven temperature-related 

faults diagnosed

▪ Mostly control faults



DIAGNOSIS RESULTS
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Figure 23: Real-time temperature data

▪ Temperature data provided 

validation of bias faults

▪ Bias symptoms are too sensitive



DIAGNOSIS RESULTS
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Figure 26: Real-time control data

▪ ERW used for cold recovery

▪ Different from design document

▪ HCV opened slightly
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