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SUMMARY1 
Fault impact analysis is an important step in developing Fault Detection and Diagnosis (FDD) tools for Heating, 

Ventilation and Air-Conditioning (HVAC) systems. It provides an insight into how HVAC systems react in the 

presence of operational faults and helps to prioritise which faults to focus on. The research in the existing 

literature has mostly focused on modelling several faults occurring in various HVAC systems and components 

to evaluate the effect of the fault on energy performance and the predicted thermal comfort of occupants. 

However, the real frequency of fault occurrence, an important factor which affects the overall impact a fault 

has on the system’s performance, has barely been addressed in the reviewed literature. This paper addresses 

this gap by considering real fault occurrence frequency data in addition to the effect of the faults on the energy 

performance of the building to assess their total energy impact. A real office building in the Netherlands was 

modelled using DesignBuilder, and its energy performance was simulated using EnergyPlus. Air Handling Unit 

(AHU) faults were introduced using the native fault object and Energy Management System (EMS) features 

available in EnergyPlus. The fault occurrence data was extracted from AHU work orders using text mining. The 

fault modelling and text mining results were combined to get the total energy impact of the fault, and 

subsequently, the faults were prioritised using the Pareto principle. The research identified that fan failure, 

Heat Recovery Wheel (HRW) failure, fan stuck at 50%, and Heating Coil Valve (HCV) stuck at 0% are the priority 

faults for winter and fan failure is the priority fault for summer. 

 

1 This deliverable is also published as a journal paper Energy and Buildings 319C (2024) 114476 “Fault prioritization for Air 

Handling units using fault modelling and actual fault occurrence data” https://doi.org/10.1016/j.enbuild.2024.114476  

http://www.brainsforbuildings.org/
https://doi.org/10.1016/j.enbuild.2024.114476
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1 INTRODUCTION 

Buildings account for 36 % of the total energy consumption worldwide [1]. Operational faults that occur in the 

Heating Ventilation and Air-Conditioning (HVAC) systems of buildings, in addition to reducing the thermal 

comfort of occupants, could lead to an energy waste of up to 30 % of this energy consumption [2]. In The 

Netherlands, buildings constituted 37 % of the final energy consumption in 2022 [3]. A 30 % energy wastage 

corresponds to 49.68 billion kWh, around 1.05 times the electricity generated by renewables in 2022 in The 

Netherlands (46.88 billion kWh as retrieved from Statistics Netherlands [4]). Preventing this energy waste will 

help reduce the investment needed to install the infrastructure needed for energy generation, transmission 

and distribution. 

Fault Detection and Diagnosis (FDD) is a process that identifies these operational anomalies and reduces 

energy waste, service costs and equipment downtime [5]. Over two decades, the research in this field has 

grown with a focus on data-driven FDD [6]. However, there is a lack of widespread uptake of FDD tools in 

practice due to (i) insufficient sensor granularity, (ii) inadequate field testing, validation, and real-time 

implementation and (iii) lack of scalability & transferability [2,5–7]. In this regard, the domain of simulation-

based fault impact analysis could play a very important role in accelerating the development and uptake of 

FDD tools. These studies could help to throw light on the impact of faults on multiple Key Performance 

Indicators (KPIs) such as energy performance, thermal comfort etc. Subsequently, by prioritising a small 

proportion of faults that account for a very high share of the impact on KPIs, the development of FDD tools 

could be accelerated. In the context of The Netherlands, fault prioritisation helps to identify which faults 

account for the energy waste equivalent to the electricity generated from renewables. It helps develop FDD 

tools to detect and diagnose these faults. A literature review of existing research on simulation-based fault 

impact analysis was performed. The reviewed research articles were analysed on multiple aspects as 

presented below: 

i. Number of faults studied: The number of faults studied varies greatly amongst the reviewed articles. For 

example, Lu et al. [8] studied various faults relating to sensors, ducts, pipes, valves, coils, dampers, chiller, 

cooling tower, boiler, pump, fan, control & scheduling. Similarly, Li and O’Neill [9] also studied various 

faults covering most of the above-mentioned system components. In papers studying multiple faults, the 

trend has been to rank the faults based on their effect. In contrast, there has also been research where 

only one fault has been studied. Li et al. [10] studied the effect of thermostat bias on three different HVAC 

supply systems: variable refrigerant flow, ground source heat pump & chiller-boiler systems. 

ii. Software employed: EnergyPlus is the most widely used simulation software in the literature. The research 

by Lee and Yik [11], Basarkar et al. [12], Wang and Hong [13], Zhang and Hong [14], Li and O’Neill [9], Li 

et al. [10], Zhong et al. [15] use EnergyPlus. While other software such as Modelica in Lu et al. [8], TRNSYS 

in Khire and Trcka [16], and Simulink in Ginestet et al. [17] have also been used, co-simulations such as 

EnergyPlus-CONTAM in Lu et al. [18], EnergyPlus-Modelica in Huang et al. [19], and Simulink-TRNSYS in 

Verhelst et al. [20] have also been employed. As summarized by Li and O’Neill [21], EnergyPlus offers 

greater fault modelling capabilities, Modelica offers flexibility for the development of dynamic fault models, 

and other software (Trnsys, HVACSIM+, DOE-2, & EnergyPro) have limited capabilities for modelling faults. 

iii. Case study building used: The US Department of Energy (DOE) prototype small, medium & large office 

buildings reported in Deru et al. [22] were used by Zhang and Hong [14], Li and O’Neill [9], Lu et al. [8], 

Huang et al. [19], Basarkar et al. [12], and Wang and Hong [13]. The medium office building with adapted, 

local weather conditions was also used for research outside the US, such as by Li et al. [10] and Zhong et 

al. [15]. Other specific case study buildings were also used, such as in the research of Lu et al. [18], 

Verhelst et al. [20], Lee and Yik [11], Khire and Trcka [16], Otto et al. [23] and Ginestet et al. [17]. While 

the use of the DOE prototype buildings offers the possibility to draw generic conclusions regarding the 

impact of faults, the use of specific case study buildings offers the possibility of experimental validation. 

iv. Indicator studied: Energy is the most widely used performance indicator to study the effect of faults. It has 

been used in all reviewed studies in the form of one or more of the following- total energy, total HVAC 

energy, energy of individual systems such as cooling and heating, energy of components such as boiler, 

pumps, heat recovery etc. Other KPIs like Predictive Mean Vote (PMV), Predicted Percentage of 

Dissatisfied (PPD) and outdoor air ratio have also been frequently used. Lu et al. [8] used a comprehensive 

set of 13 KPIs to study the effect of faults. Li and O’Neill [9] and Lu et al. [18] used the Sobol index to 

analyse the sensitivity of KPIs such as energy, PPD & outdoor air ratio to the implemented faults. The 

general trend is to rank the simulated faults based on the employed KPIs. 

v. Study of simultaneous faults: The literature also researches the effects of multiple faults occurring 

together. Zhong et al. [15] concluded that multiple faults can cause either synergetic or antagonistic 
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effects. Khire and Trcka [16] demonstrated complex coupling effects of faults. Li and O’Neill [9] combined 

the studied faults' occurrence into fault modes, constituting a simulation input file. 

vi. Fault mode occurrence: Finally, research has also been performed on incorporating probability distribution 

functions for fault intensity/failure mode occurrence. This was outlined as a recommendation for future 

research by Li and O’Neill [21]. The research of Otto et al. [23], Li and O’Neill [9] and Lu et al. [18] 

incorporated mathematical functions for the studied faults into fault modes which constituted a simulation 

input file. 

Based on the reviewed body of literature, it was identified that there is a lack of inclusion of real-world fault 

occurrence frequency data from maintenance work orders in a simulation-based fault impact analysis study. 

The fault frequency is an important parameter which affects the energy impact of faults on buildings. A fault 

that has a minimal effect on energy consumption but occurs very frequently can have a much greater impact 

on energy consumption. Therefore, the primary objective of this research is to combine real-world fault 

occurrence frequency data extracted from maintenance work orders with the effect of faults obtained through 

building energy simulations to quantify the total energy impact of faults. Additionally, the reviewed studies 

have not made a selection of important faults in their research through prioritisation. Such a selection would 

help to narrow down the focus to a small number of faults which have a very high impact. Consequently, the 

secondary objective of this research is to select a set of prioritised faults based on their total energy impact. 

Furthermore, this paper links the results of the fault prioritisation obtained with those of engineering practice. 

When these faults have to be detected and diagnosed, an alert must be raised to signal their diagnosis. Thus, 

the tertiary objective of this research is to study the Building Management System (BMS) alerts available in 

practice and identify if any new alerts need to be developed for the studied faults. 

The technique of text mining has been employed to obtain real fault occurrence frequency from maintenance 

work orders because the fields containing information relevant to the faults are free text fields. Also, there has 

been an increase in scientific research focusing on extracting useful information from maintenance work 

orders using text mining recently. A comprehensive literature review by Shamshiri et al. [24] identifies multiple 

articles using text mining to obtain information such as frequency of warning and failure generation [25], 

condition of building systems such as electrical, plumbing, HVAC, fire and elevator [26], identifying locations 

of fault occurrences and systems that require frequent maintenance [27], severity of service requests [28], to 

benchmark buildings’ operational performance [29], and to benchmark maintenance operations [30]. This 

research also contributes to the growing literature on text mining of HVAC maintenance work orders. 

The chosen system for study is the Air Handling Unit (AHU) due to its importance in the HVAC system. The AHU 

provides heating and cooling along with air distribution to meet the indoor space conditioning requirements 

[31]. Its customised nature and absence of quality system integration could lead to the failure of hardware 

and controller faults [31]. Since the number of AHUs is 20 times that of the available maintenance personnel 

and complex control strategies require expensive external consultancy for diagnosing issues [32], there is a 

high potential for implementing Automated FDD (AFDD) and predictive maintenance solutions for AHUs. Thus, 

this study focuses on prioritising AHU faults. 

http://www.brainsforbuildings.org/
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2 METHODOLOGY 

The methodology to prioritize faults comprises three parts: (i) Fault modelling and simulation to study the effect 

of faults on energy performance; (ii) text mining to obtain fault occurrence frequency value; and (iii) assessing 

the total energy impact by combining the effect on energy performance and fault occurrence frequency 

followed by prioritisation. Fig. 1 provides an overview of the methodology. 

 

Fig. 1. The overall methodology to determine the impact of faults. 

The chosen case study building was first modelled using the software DesignBuilder, and its energy 

performance was simulated using EnergyPlus. This simulation represented the fault-free scenario and will 

henceforth be referred to as baseline simulation. Subsequently, the studied HVAC faults were modelled using 

EnergyPlus, and the energy performance of the case study building was simulated under the influence of these 

faults. The effect of each fault on the energy performance of the building was determined by comparing it with 

the energy performance of the baseline simulation. Simultaneously, maintenance work orders were used to 

obtain the frequency of occurrence of the studied faults through text mining. The total energy impact of each 

fault was calculated by combining the effect on energy performance and its frequency of occurrence. 

Subsequently, the faults were prioritised based on the calculated impact values. Additionally, the list of 

prioritised faults was compared against available BMS alerts to determine if any new alert is needed when a 

prioritised fault has been diagnosed in future using an AFDD tool. 

2.1 Case study building: Modelling and calibration 

The chosen case study building is an office building of the building services company Kropman, located in the 

city of Breda, The Netherlands. This building is a representative office building in Western Europe. Furthermore, 

this building is a living laboratory, serving as a testbed for various research activities in the past and the 

present. Additionally, relevant sensor and energy meter data is available for the calibration of its model leading 

to the choice of this building as the case study. This building was built in 1993 and renovated in 2009. The 

building is divided into three HVAC zones: North, South and 1.05. Fig. 2(a) illustrates the external appearance 

of the building, and Fig. 2(b) illustrates how the zones are laid out on the first floor of the building. The North 

& South zones contain offices on three floors: ground floor, first floor and second floor. Zone 1.05 exists only 

on the first floor. The space below zone 1.05 on the ground floor contains a canteen and a meeting room which 

are a part of zone North. 

http://www.brainsforbuildings.org/
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Fig. 2. (a) External view of the case study building and (b) division of the building into zones on the first floor (adapted from 

Thamban [34]). 

The air supply and distribution are done through a central AHU, which contains supply and return fans, supply 

and return filters, a Heat Recovery Wheel (HRW), and a heating coil. The cooling coil is not present in the AHU 

itself but rather as three after-coolers, providing cooling for the three zones. Fig. 3 illustrates the AHU and the 

after-coolers for the three zones. The energy supply is provided by a gas-fired boiler for the heating season and 

a chiller for the cooling season. In addition to the heating coil in the AHU, the space heating demand is also 

met through radiators present in all three zones. A detailed explanation of the HVAC system & equipment 

characteristics can be found in Chitkara [33]. 

 

Fig. 3. An overview of the HVAC system at the case study building Kropman Breda. 

The building was modelled using DesignBuilder, and its energy performance was simulated using EnergyPlus. 

Appendix A lists the construction information used for the model of the building, and Appendix B lists the 

parameters used in the HVAC system modelling. The design of the heating season model included an AHU with 

HRW, a supply fan, a return fan, and a heating coil. Due to the limitations of modelling the after-coolers in 

DesignBuilder, the cooling coils were modelled by placing a fan coil unit in the respective zones and the 

simulation calculated the energy performance of the system by considering the air delivered at the zone air 

terminal to pass through the fan coil unit before being supplied to the zones. However, the cooling coils in this 

model lack controllers, an object that adjusts the cooling coil valve (CCV) opening depending on the value of 

the supply air temperature (SAT), leaving the cooling coil to meet the setpoint. The presence of these 

controllers is important for adjusting valve opening depending on the type and intensity of fault introduced 

http://www.brainsforbuildings.org/
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and, consequently, to simulate the energy performance of the HVAC system under the presence of faults during 

the cooling season. Therefore, a second HVAC model was designed to represent the cooling season operation 

of the case study building where three AHUs were placed in parallel, with each AHU containing a cooling coil 

placed after the supply fan. This model accurately represents the airflow streams to and from the three zones: 

cooling coils, the chilled water flow system (along with the pumps), and the chiller of the building. Fig. 4(a) 

illustrates the placement of the cooling coil after the supply fan in the AHU. Fig. 4(b) illustrates the layout used 

for the cooling season model in DesignBuilder. 

 

Fig. 4. (a) AHU with cooling coil placed after supply fan (b) HVAC model layout of three AHUs in parallel for summer (cooling 

season) simulation. 

Information provided by experts indicated that the median HVAC maintenance request was resolved within 21 

hours after it was reported. In future, if a BMS containing an AFDD add-on raises an alert after diagnosing a 

fault, the impact of the fault will persist for 21 hours before being fixed. Therefore, to study the effects of the 

various faults on the building’s energy consumption, it was decided to simulate the performance of the building 

over 24 hours each for winter and summer. The chosen dates for fault simulation were 9th February 2023 for 

the winter season and 15th June 2023 for the summer season. The data recorded at the weather station in 

Gilze-Rijen (located 15 km from the building) was retrieved from the Royal Netherlands Meteorological 

Institute’s database and was converted to EnergyPlus weather files. The baseline models were calibrated 

according to the ASHRAE (American Society of Heating Refrigerating and Air-conditioning Engineers) Guideline-

14 using the error metrics Normalised Mean Bias Error (NMBE) and Coefficient of Variation of the Root Mean 

Square Error (CV-RMSE) whose formulae, taken from Gestwick and Love [35] and ASHRAE [36], are provided 

in Eq. (1) and Eq. (2): 

 

NMBE =  
∑ (yi−ŷi)n

1

(n−p)×y̅
× 100      Eq. (1) 

 

CV − RMSE =  
[∑ ((yi−ŷi)2)/(n−p)]n

1
1/2

y̅
× 100   Eq. (2) 

 

Where 

yi is the measured data point. 

yi is the simulated data point. 

y is the mean value of the measured data points. 

n is the number of data points. 

p is the number of parameters in the model (0 for NMBE & 1 for CV- RMSE) [35]. 

The BMS of the case study building logged data of the hourly electricity consumption of the chiller, hourly 

electricity consumption of the rest of the HVAC system (including fans, HRW & pumps), and hourly natural gas 

consumption. Therefore, the calibration was performed result, the baseline model could not be calibrated for 

natural gas consumption. The simulated natural gas consumption value for 9th February was 944.46 kWh, 

and the effects of heating season faults on the energy performance of the building were studied by considering 

this performance as the baseline. The obtained error metrics for the total HVAC electricity of the heating season 

model (NMBE: 4.34 %, CV-RMSE 11.34 %) and the chiller electricity consumption of the cooling season model 

(NMBE: -4.30 %, CV-RMSE: 29.61 %) were within the limits of ± 10 % for NMBE & 30 % for CV-RMSE specified 

in ASHRAE Guideline 14–2014 for calibration using hourly data. Fig. 5 shows the simulated and measured 

total HVAC electricity consumption for the simulated winter day. Similarly, Fig. 6 shows the simulated and 

̂ 
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actual chiller electricity consumption for the simulated summer day. It must be noted that the night ventilation 

control strategy was not implemented for the cooling day simulation. 

 

Fig. 5. A comparison of the simulated and measured total HVAC electricity consumption for the winter day. 

 

Fig. 6. A comparison of the simulated and measured chiller energy consumption for the summer day. 

2.2 Selection of faults for focus and fault modelling 

Gunay, Shen and Yang [37], provided an overview of the AHU faults (along with Variable Air Volume (VAV) 

terminal faults) studied in the literature over twenty years. These faults can be grouped into the categories of 

design, acute and degradation faults. The scope of this research is limited to only non-degradational, acute 

faults concerning the heating coil, cooling coil, fans, HRW, sensor bias and control setpoint. Applying this 

criterion, a selection of faults was made to be studied. Table 1 lists the faults, the fault severity settings 

studied, and how they were modelled in EnergyPlus. The fault severity settings for Heating Coil Valve (HCV), 

CCV & fan stuck faults were chosen based on the work of Li and O’Neill [9], who obtained the values from a 

combination of literature review and modelling. The sensor bias and control setpoint fault severity setting were 

chosen based on other reviewed literature. 
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Table 1 List of AHU faults chosen to be studied. 

Component Fault Fault settings 

studied 

EnergyPlus feature used for fault modelling 

Heating coil & valve 

actuator 

Heating coil valve stuck 0 %, 100 % Energy Management System (EMS):  

Coil valve stuck- the minimum, maximum & actual mass 
flow rate of water through the coil was set at a value 

corresponding to the valve stuck %  

Coil valve leak- the minimum mass flow rate of water 

through the coil was set at a value corresponding to the 

valve leak % 

 

Fan failure/stuck- the air mass flow rate set at a value 

corresponding to the airflow %  

Heating coil valve leak 0 %, 40 % 

Cooling coil & valve 

actuator 
Cooling coil valve leak 0 %, 50 % 

Cooling coil valve stuck 0 %, 40 % 

Fans Fans failure 0 % airflow 

Fans stuck 50 % airflow, 

85 % airflow 

Heat recovery wheel 

(only for heating day) 

Wheel failure 0 % rotation Heat Recovery (availability schedule set to ‘Off 24/7′) 

Sensor bias Supply air temperature 

sensor bias 

±2°C bias Operational Faults (offset of ± 2°C introduced) 

Indoor air temperature 

sensor (thermostat) 

bias 

±2°C bias 

Control setpoint Incorrect supply air 

temperature setpoint 

(high) 

+2°C Setpoint Managers: minimum & maximum setpoint 

values changed for the heating model; 

Incorrect supply air 

temperature setpoint 

(low) 

-2°C 

 

Setpoint Managers: setpoint values at outdoor low and 

high temperatures changed for the cooling model 

2.3 Effect of fault on energy performance 

The effect of each fault on energy performance was obtained by comparing the energy consumption under the 

faulty condition against the energy consumption of the baseline model. While the effect on thermal comfort is 

not in the scope of this study and forms part of another upcoming study, the absolute value of the energy 

deviation was considered for the effect on energy performance due to which faults that lead to lower energy 

consumption but reduce thermal comfort such as fan failure, fan stuck at a low speed, HCV and CCV stuck 

closed/at a very low level etc. were also considered as very important faults (depending on the magnitude of 

deviation). For the winter day faults, the KPI used to study the effect on energy performance is the total HVAC 

energy consumption. For the summer day faults, the KPI used to study the effect on energy performance is the 

sum of the chiller energy consumption and pump energy consumption. 

2.4 Fault occurrence frequency analysis 

This section presents the methodology adopted to obtain fault occurrence frequency values using text mining. 

Fig. 7 illustrates the methodology developed for the text mining process using the software Orange. 

 

Fig. 7. An overview of the methodology adopted to obtain fault frequency using text mining. 

The work orders that were used as input for the text mining were 11,255 non-annual AHU maintenance work 

orders raised with SPIE Building Solutions B.V., a building services company. These work orders were raised 

over 5 years between May 2018 to April 2023 and pertain to 1,822 non-residential buildings (municipality 
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buildings, train stations, schools, supermarkets, production halls, museums, office buildings, university 

buildings, healthcare buildings, airports, shops). Out of 76 fields available to be filled in each maintenance 

work order, the data filled in five fields that could provide relevant information about the faults were chosen 

for analysis. These fields are: (i) subject of the reported issue, (ii) work order text, (iii) cause, (iv) follow-up 

action, and (v) work carried out. It is important to note that these work orders were filled in Dutch. 

Following the selection of the relevant fields, pre-processing was performed, which involved the removal of 

standard Dutch stop words, tokenisation, and transformation to convert all letters to lowercase and remove 

accents. The pre-processing was performed iteratively by observing the word cloud obtained at the end of each 

iteration. Fig. 8 shows the word cloud obtained at the end of the final iteration. The word cloud has been 

translated into English. 

The word cloud obtained in Fig. 8 contains non-HVAC-related words such as west, campus, why etc. It also 

contains HVAC-related terms outside the scope of the faults being studied, such as frost thermostat, pump, 

etc. To extract results relevant to the studied faults, a lexicon of 50 keywords, which could be used to describe 

the studied AHU faults, was developed. Appendix C lists the used keywords and their English translation. These 

keywords were obtained from how the faults have been referred to in the literature and translated to obtain 

their Dutch language equivalent for use in the lexicon. For example, if the fault ‘heating coil valve stuck’ is 

considered, the term ‘heating coil valve’ is represented as ‘regelafsluiter verwarming’ in Dutch and the word 

‘stuck’ is represented by the word ‘vast’ in Dutch. Sometimes there could be a word variation that could be 

used, e.g. verwarmer (heater) instead of verwarming (heating). Considering all such possible variations, the 

lexicon of 50 keywords was developed for the studied faults. 

Fig. 8. The word cloud obtained at the end of pre-processing. 

To calculate the frequency of fault occurrence, the ‘Corpus to Network’ feature (also known and hereafter 

referred to as network clustering) was used. This feature provides information on how many times two given 

words occur in a given window [38]. The count of co-occurrence of specific combinations of keywords from the 

defined lexicon indicates how many times a particular fault may have occurred. There are three hyper-

parameters in the network clustering feature driving the obtained results: threshold (the minimum number of 

times two words appear in a window of 2 × window size + 1), frequency threshold (the minimum frequency 

each word must have to be included in the network results), and window size [38]. The values of both threshold 

and frequency threshold were set to 1 to consider all word occurrences and co-occurrence counts. A window 

size of 7 was used based on the research of Levy et al. [39]. This means that for every given word, the algorithm 

searches for the occurrence of another word within a window of 7 positions to its right and 7 positions to its 

left. Specific combinations of two keywords, the co-occurrence of which could be construed as a possibility a 

fault could have occurred, were developed for all the studied AHU faults. These combinations have been listed 

in the supplementary material provided in this article. The values of all co-occurrences of the listed 
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combinations per fault were obtained and summed up to acquire the total count (or frequency) of the number 

of times these faults may have occurred in the analysed work orders. 

It must be noted that the network clustering performed as outlined above gives a possible value for fault 

frequency but does not guarantee that each of the keywords occurred only once in each work order. Since the 

studied fields are free-text fields, it is possible that one or more keywords could have occurred more than once 

in the work order and there is a chance that the co-occurrence for a given combination of keywords is more 

than one in the analysed window size. Therefore, to overcome this, an additional feature called ‘Bag of Words’ 

[40] was simultaneously applied which extracted the unique words occurring in each work order. 

Subsequently, a corpus was created where each work order contained only the extracted unique words before 

performing network clustering. The window size for the network clustering was adjusted to include the length 

of the full work order. The obtained fault frequency results through this process can also be interpreted as the 

number of work orders issued for a specific fault. Eq. (3) presents the formula for fault frequency. 

 

Fault frequency (F) =  ∑ values of all co − occurrences of the listed combinations for the fault          Eq. (3) 

 

When divided by 5 (the number of years for which maintenance work orders were considered), this number 

gives the annual work orders raised for each fault. This result is subsequently used for calculating the total 

energy impact. 

2.5 Fault impact and fault prioritisation using the Pareto principle 

Once the effects of faults on energy consumption and the frequency of faults were obtained, the overall impact 

of the fault was calculated by multiplying the energy effect and frequency, as indicated in Eq. (4) below. 

 

I = E × F Eq. (4) 

 

where, 

E is the effect of the fault on energy consumption expressed in kWh per day 

F is the fault frequency expressed as the number of work orders per year (normalised fault frequency 

= fault frequency / total number of work orders analysed), and 

I is the fault impact, expressed in kWh per day per year 

 

Subsequently, the Pareto Principle was used to prioritise the faults. First introduced by Vilfredo Pareto in 

1896–1897 and later pointed out by Dr. Joseph Juran in the 1950s to be a universal principle, it states that 

20 % of the causes lead to 80 % of the effects [41]. The calculated total energy impact values of the faults 

were first arranged in descending order. Subsequently, the (first 20 % of) faults that cumulatively led to a total 

energy impact of 80 % compared to the baseline scenario were prioritized and recommended for monitoring 

by future FDD tools. Applying the Pareto Principle to prioritise faults represents a novel contribution to the 

literature on fault impact analysis because the general practice in the reviewed literature has been to rank the 

studied faults based on their sensitivity to specific, chosen KPIs. Through the Pareto Principle, a specific 

threshold (80 %) is used as the cutoff point to select faults for further focus in subsequent steps. 

Once the faults have been prioritised, the subsequent logical step the presence of these high-priority faults 

which also requires the presence of alerts to raise a signal if the faults have been diagnosed. Therefore, a list 

of BMS alerts available in practice was obtained from the PULSE Core platform of SPIE Building Solutions B.V. 

to determine if the development of any additional alerts was needed for the prioritized faults. 
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3 RESULTS 

This section presents the effects of AHU faults on the energy performance of the case study building, the 

results of the fault frequency analysis, and the overall impact of each fault. Subsequently, the prioritised faults 

for both the heating and cooling seasons, after applying the Pareto principle, are also presented. Finally, 

commonly available BMS alerts are also presented. 

3.1 Effect of faults on energy performance 

In this section, the effects of the studied faults on the energy performance of the case study building are 

presented. The indicator used for energy performance is the total HVAC energy consumption for the winter day 

simulation and the total energy consumption of the chiller and pumps for the summer day simulation. Table 2 

presents the deviation in the energy performance indicator under faulty operations for the winter and summer 

simulation days. 

For the heating season, the HRW failure leads to the highest increase in energy consumption followed by the 

IAT sensor bias (-2°C) fault. Fan failure leads to the highest decrease in energy consumption, followed by IAT 

sensor bias (+2°C), fan stuck (50 %) and HCV stuck (0 %). For the cooling season, CCV stuck (50 %) and CCV 

leak (40 %) lead to the highest increase in energy consumption whereas fan failure and CCV stuck (0 %) lead 

to the highest decrease in energy consumption. 

Table 2 Overview of the effects of faults on energy consumption. 

Heating - baseline energy: 999.14 kWh Cooling - baseline energy: 67.02 kWh 

Fault Energy deviation (kWh) Fault Energy deviation (kWh) 

HCV stuck (0 %) -112.37 CCV stuck (0 %) -67.02 

HCV stuck (100 %) 6.75 CCV stuck (50 %) 14.80 

HCV leak (0 %) 0.00 CCV leak (0 %) -0.01 

HCV leak (40 %) -1.31 CCV leak (40 %) 14.23 

Fans stuck (85 %) -31.49 Supply fan stuck (85 %) -0.95 

Fans stuck (50 %) -118.11 Supply fan stuck (50 %) -15.40 

SAT sensor bias (+2°C) -20.57 SAT sensor bias (+2°C) -0.94 

SAT sensor bias(-2°C) 5.71 SAT sensor bias(-2°C) -2.55 

IAT sensor bias (+2°C) -131.99 IAT sensor bias (+2°C) -0.10 

IAT sensor bias(-2°C) 80.94 IAT sensor bias(-2°C) 0.13 

Incorrect SAT setpoint 

(+2°C) 

1.63 Incorrect SAT setpoint (+2°C) -2.73 

Incorrect SAT setpoint (-2°C) -20.32 Incorrect SAT setpoint (-2°C) -0.94 

HRW failure 317.03   

3.1.1 Effect of sensor bias and incorrect setpoint faults on energy exchanged 

at heating and cooling coils 

It can be observed from Table 2 that the sensor bias faults (except for IAT sensor bias in the cooling season) 

and incorrect setpoint faults have different magnitudes of effects when the fault severities are in opposite 

directions. To understand these results further, the energies exchanged at the heating and cooling coils were 

also analysed for the respective sensor bias and incorrect setpoint faults. These results are presented in Table 

3 for the heating season & Table 4 for the cooling season. The energies exchanged at the coils for the rest of 

the simulated faults are shown in Appendix D. 

http://www.brainsforbuildings.org/


 

www.brainsforbuildings.org      14/33 

Table 3: Energy exchanged at the heating coil and Total HVAC energy for selected faults. 

Fault Energy exchanged at the 

heating coil (kWh) 

Deviation (kWh) Total HVAC energy 

consumption (kWh) 

Deviation 

(kWh) 

Baseline 282.04 - 999.14 - 

SAT Sensor Bias (+2°C) 220.16 -61.88 978.57 -20.57 

SAT Sensor Bias (-2°C) 311.15 29.11 1004.85 5.71 

IAT Sensor Bias (+2°C) 256.47 -25.57 867.15 -131.99 

IAT Sensor Bias (-2°C) 254.36 -27.68 1,080.08 80.94 

Incorrect SAT Setpoint (+2◦ C) 295.16 13.12 1,000.77 1.63 

Incorrect SAT Setpoint (-2◦ C) 220.17 -61.87 978.82 -20.32 

Table 4: Energy exchanged at the cooling coils and energy consumption of chiller and pump for selected faults. 

Fault South 

zone 

North 

zone 

1.05 

zone 

Total Energy 

Exchanged 
Deviation Energy 

Consumption 

(Chiller & 

Deviation 

 (kWh) (kWh) (kWh) (kWh) (kWh) Pump) (kWh) 

Baseline 83.16 101.09 41.94 226.19 - 67.02 - 

SAT Sensor Bias (+2°C) 87.23 99.89 42.99 230.11 3.92 66.08 -0.94 

SAT Sensor Bias (-2°C) 70.47 91.22 37.06 198.75 -27.44 64.47 -2.55 

IAT Sensor Bias (+2°C) 82.66 100.68 41.93 225.27 -0.92 66.92 -0.10 

IAT Sensor Bias (-2°C) 84.18 101.49 41.85 227.52 1.33 67.15 0.13 

Incorrect SAT Setpoint 

(+2°C) 

70.71 91.45 37.18 199.34 -26.85 64.29 -2.73 

Incorrect SAT Setpoint 

(+2°C) 
87.22 99.91 42.99 230.12 3.93 66.08 -0.94 

EnergyPlus uses a control strategy that uses the model’s knowledge of how much energy enters/leaves a zone 

as a function of the zone’s temperature. It uses a ‘predictive system energy balance’ method first to calculate 

how much energy needs to be delivered by the HVAC system to maintain the required zone temperature and 

then updates the actual zone temperature based on how much energy is actually delivered by the HVAC system 

[42]. The controller for the water coil (heating/ cooling) is a solution inverter which iterates through various 

mass flow rates through the coil to find the required mass flow rate to meet the coil SAT [42]. The HVAC system 

in the case study building accomplishes its control strategy through a master-slave PI controller where the 

master controller adjusts the SAT setpoint in response to the measured Indoor Air Temperature (IAT), and the 

slave controller adjusts the opening of the HCV/CCV in response to the SAT setpoint to be met. Table 5 lists 

the expected end outcome regarding the energy transferred at the heating and cooling coils for these six faults 

in the case study building. These expected outcomes were deduced from how the master-slave controller 

would react to such a fault from the moment of introduction in the HVAC system. The details of the full reaction 

that led to these final expected outcomes can be found in Appendix E. 

The results of the EnergyPlus fault simulations were compared against the expected outcome qualitatively 

explained in Table 5 to understand how close the simulation is to the expected reality. Comparing the expected 

behaviour under the master-slave control with the simulation results for the heating season faults in Table 3, 

it can be seen that except for the IAT sensor bias (-2°C) fault, the energy transferred at the heating coil for the 

remaining faults followed the expected trend in Table 5 and the direction of deviation of total HVAC energy is 

the same as that of the energy transferred at the heating coil. For the IAT sensor bias (-2°C) fault, the deviation 

of total HVAC energy is in the opposite direction of the energy transferred at the heating coil. 

When the comparison was made for the simulation results of the cooling season faults in Table 4 against the 

expected results, it was observed that the SAT sensor bias (-2°C) and the incorrect SAT setpoint (+2°C) faults 

follow the expected trend and the direction of deviation of chiller and pump energy consumption is the same 

as that at the cooling coils. For the IAT sensor bias (+2°C) the simulated result is a negligible reduction in 

energy (both coils and chiller + pumps); the expected controller reaction is a negligible increase. Nevertheless, 

the magnitude of deviation is negligible. For the IAT sensor bias (-2°C), the energy transferred has increased 

very slightly at the cooling coils of the South and North zones and decreased very negligibly at the cooling coil 

for zone 1.05. This is against the result expected with the master–slave controller. For the incorrect SAT 
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setpoint (-2°C) fault, the energy ex-change at the cooling coils of zones South and 1.05 follow the expected 

trend of a small increase whereas it is the opposite for the North zone cooling coil. There is a very slight 

decrease in the energy consumption of chiller and pumps. Finally, for the SAT sensor bias (+2°C) fault, the 

direction of deviation of energy exchanges at the cooling coils of zones South and 1.05 increase as expected 

whereas it decreases at the cooling coil in zone North although the magnitude of deviation and the offset effect 

caused by the master–slave controller cannot be estimated. 

Table 5: Expected change in energy transfer at heating and cooling coils due to master–slave controller. 

Fault Master-slave controller reaction: heating season Master-slave controller reaction: cooling season 

SAT sensor 

bias (+2°C)  

Overall, there is a decrease in energy transfer 

across the heating coil. 

The effect of this fault should be (partly) compensated 

by the master–slave controller. Overall, there is an 

increase in energy transfer across the cooling coils. 

SAT sensor 

bias (-2°C)  

The effect of this fault should be (partly) 

compensated by the master–slave controller. 

Overall, there is an increase in energy transfer at 

the heating coil.  

Overall, there will be a decrease in cooling energy. 

IAT sensor 

bias (+2°C)  

Overall, there will be a decrease in energy 

transferred at the heating coil. 

There is expected to be a small (negligible) increase in 

energy transfer at the cooling coils. 

IAT sensor 

bias (-2°C)  

There is expected to be a negligible change 

(increase) in energy transfer at the heating coil.  

Overall, the energy transferred across the cooling coils 

will decrease and the opening of the cooling coils will 

depend on how much the IAT value increases 

Incorrect SAT 
setpoint 

(+2°C) 

Overall, there is expected to be a minimal change 
(increase) in energy transferred at the heating coil 

if any.  

Overall, there is expected to be a decrease in energy 

transfer at the heating coil. 

Incorrect SAT 

setpoint (-

2°C) 

Overall, there is expected to be a decrease in 

energy transfer across the cooling coils. 

Overall, there is expected to be a negligible/small 

increase in energy transfer at the cooling coils. 

3.1.2 Energy performance result for impact calculation 

As mentioned in section 2.3, the absolute value of the deviation in energy consumption is chosen to represent 

the effect on energy performance. Fig. 9 presents the absolute deviation in total HVAC energy consumption in 

decreasing order for the heating season faults. HRW failure and fan failure have the highest effect on energy 

performance, followed by IAT sensor bias (+2°C), fan stuck (50 %), HCV stuck (0 %) and IAT sensor bias (-2°C). 
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Fig. 9. Effect of heating season faults on the energy performance of the case study building. 

Similarly, Fig. 10 presents the absolute deviation in energy consumption of the chiller and pumps in decreasing 

order for the cooling season faults. The CCV stuck (0 %) fault and fan failure have the joint highest effect on 

energy performance, followed by fan stuck (50 %), CCV stuck (50 %), and CCV leak (40 %). 

 

Fig. 10. Effect of cooling season faults on the energy performance of the case study building. 

3.2 Frequency of fault occurrence from text mining 

Fig. 11 presents the results of the fault frequency values obtained through the network clustering feature. The 

figure presents the results for the two different analyses: clustering without applying the bag of words feature 

and clustering after applying the bag of words feature. The results are presented as the total count of relevant 

word co-occurrences obtained across all 11,255 work orders examined. Fan failure has the highest frequency 

of occurrence and its value is much higher than the fault with the second highest frequency. The CCV stuck 

fault has the least frequency of occurrence. For the HCV stuck fault, the obtained count is the same for both 

the analysed cases. For six faults (fan failure, incorrect SAT setpoint high, HCV leak, HRW failure, CCV leak and 

CCV stuck), the count obtained without applying the bag of words feature is higher than the count obtained 

after applying the bag of words feature (although for the CCV leak fault, the difference is only 1 and for the 

CCV stuck fault, the difference is only 8). However, it is interesting to note that the value of the total count 

obtained through network clustering after applying the bag of words feature is higher than the value obtained 

without using the bag of words feature for four faults (incorrect SAT setpoint low, SAT sensor bias, fan stuck, 

and IAT sensor bias). 

As mentioned in section 2.4, for calculating the total fault impact, the results obtained after applying the bag 

of words feature were used. In this way, the results of the word co-occurrence count consider only one 

occurrence of each keyword per work order and can also be interpreted as the possible number of times the 

faults occurred over the analysed 5 years. When this value is divided by 5, the annual occurrence rate of each 

fault can be obtained and used for impact calculation. 
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Fig. 11. Results for fault frequency occurrence obtained through network clustering for both cases (with and without applying 

the bag of words feature). 

3.3 Total energy impact and fault prioritisation 

In this section, the total energy impact values of the AHU faults obtained using Eq. (4), are presented. Fig. 12 

shows the total energy impact of the heating season faults along with the Pareto curve (referred to as 

‘Cumulative Impact (%)’ in the figure). The fan failure fault has the highest impact, followed by HRW failure, 

fan stuck (50 %), and HCV stuck (0 %). These four faults comprise the list of prioritised faults for the heating 

season when the Pareto principle is applied. Fig. 13 presents the total energy impact of the cooling season 

faults along with the Pareto curve. The fan failure fault has the highest total energy impact on the case study 

building and solely constitutes the list of prioritised faults for the cooling season. 

 

Fig. 12. Total energy impact values and Pareto curve for the heating season faults. 
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Fig. 13. Total energy impact values and Pareto curve for the cooling season faults. 

3.4 List of BMS alerts 

A list of existing BMS alerts related to the studied AHU components and faults was obtained to assess what 

faults can be detected using already available alerts in the BMS. The availability of these alerts was classified 

as either ‘often’ or ‘occasionally’ depending on how often these alerts were observed in practice. The broken 

fan drive alert (based on motor failure, digital command alert due to incorrect fan operational status returned 

compared to the sent command signal, delta pressure transmitter) and HRW failure alert (based on motor 

failure & digital command alert due to incorrect motor operational status returned compared to the sent 

command signal) are often available. Similarly, alerts are often available for situations when sensor values of 

SAT, supply water temperature to coils, IAT, return air temperature and supply air pressure exceed the setpoint 

limits for a specific period. However, these alerts do not indicate if a sensor has a bias/offset or if the setpoint 

itself is wrongly configured. So, these alerts may not help directly to detect the sensor offset and setpoint faults 

that were simulated in this study. For some components like the CCV and the HCV, their end positions (0 % & 

100 % open) are monitored using a digital command alert based on an electrical contact. If the valves are 

stuck at either 0 % or 100 %, then the available alerts can be used to diagnose the presence of the stuck valve 

faults. However, there is no alert available for the valves being stuck in between 0 % & 100 % open. Finally, 

the fan stuck fault and valve leak fault do not have an alert. 
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4 DISCUSSION 

The main objective of this research was to combine the actual frequency of fault occurrence with the simulated 

effect on energy performance into a total fault impact analysis framework. The Pareto principle was employed 

to prioritise the faults based on their total energy impact. Analyzing the list of existing alerts helped to 

understand how often alerts are available and can be triggered when the studied AHU faults (at the studied 

severity levels) are diagnosed. 

4.1 Reflection on results 

In this sub-section, a discussion of the obtained results for energy performance, fault frequency, total energy 

impact and BMS alerts is performed. 

4.1.1 Effect on energy performance 

The KPI used to study the effect of summer faults on energy performance was the sum of chiller and pump 

energy consumption. The fan and HRW energy consumption of the cooling season model were not included in 

the KPI because it does not reflect the actual energy consumption of those components in the building. As a 

result, the effect on energy performance for the fan failure fault was the same as that for the CCV stuck at 0 

%. When the accurate HVAC system energy value is considered for the KPI, the fan failure fault will have a 

much higher effect on energy performance than the CCV stuck (0 %) fault. The following brief calculation 

analyses what this additional energy performance deviation would be for fan failure. For the summer season, 

the supply fan power is around 2.8 kW when operational. Considering the return AHU fan too, the total fan 

power is 5.6 kW. The HRW power is 3.7 kW. When the AHU is operational for 10 h a day, the energy consumed 

by these two fans and the HRW put together is 93 kWh. Therefore, the deviation of total HVAC energy is 160 

kWh. In the case of the fan stuck fault, the fan power consumption is reduced by 50 % and there is no change 

in the power consumption of HRW. So, the absolute energy deviation from the baseline of total HVAC energy 

consumption for the fan stuck (50  

4.1.1.1.  Effect of night ventilation strategy. 

The simulated model did not contain a night ventilation strategy (implemented between 23:00 and 07:00 in 

the case study building) for the cooling season. If night ventilation were in effect, the maximum additional 

consumption of the HVAC system is (roughly) 45 kWh if the night ventilation is switched on throughout the 

night. So, the absolute energy deviation of total HVAC energy consumption for fan failure could vary between 

160 kWh and 205 kWh, depending on the duration of the night ventilation operation. Similarly, for the fan 

stuck fault, the absolute energy deviation varies between 43.5 kWh and 66 kWh, depending on the duration 

of the night ventilation operation. 

Since the operation of night ventilation depends on the IAT value, the IAT sensor bias also affects the operation 

of night ventilation. A positive IAT sensor bias could lead to a maximum effect of night ventilation being 

switched on throughout the night and vice-versa for a negative bias (roughly 45 kWh absolute energy deviation 

for both cases). Consequently, this will also affect the chiller energy consumption during the day which cannot 

be quantified without a simulation of a model with the night ventilation strategy. 

4.1.2 Frequency of fault occurrence 

The frequency of fault occurrence has played an important role in determining the impact of faults. For 

example, in prioritising cooling season faults, the CCV stuck (0 %) fault and the fan failure fault contribute 

equally to the effect on the studied energy performance KPI. However, the fan failure fault occurs most 

frequently among the studied faults in the cooling season. This compounds the impact of the fault when both 

the energy effect and frequency are considered together (more than 80 % of the cumulative total energy impact 

of all faults). In contrast, the CCV stuck (0 %) has the least frequency of occurrence, and consequently, it 

contributes to just above 7 % of the cumulative total energy impact of all faults. In prioritising heating season 

faults, the HRW failure has the highest effect on energy performance but occurs with the least frequency. 

Therefore, the frequency value tempered the total energy impact the fault had on the building (just over 10 % 

of the cumulative total energy impact of all faults). 

The values obtained for the fault frequency indicated that for four faults, the frequency obtained after applying 

the bag of words feature was higher than the frequency obtained without applying the bag of words feature. 

This observation is contrary to the initial expectation. One possible reason could be that in the case using the 

bag of words feature, the window of search for word co-occurrence was expanded to include the whole work 

order thereby returning relevant results even if the two words were found outside the window size of 7. 
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However, the specific reason for this result and all possible circumstances that would lead to this result were 

not investigated as it requires further study is required outside the scope of this research. 

4.1.3 Total energy impact and fault prioritisation 

The results obtained for the cooling season indicated that fan failure alone constitutes the list of prioritised 

faults. If the total HVAC energy were to be considered (as discussed in section 4.1.1), the fan failure would still 

be the sole prioritised fault both when the night ventilation operation is considered and not considered. While 

the HRW failure was not simulated for the cooling season, it had the highest effect on energy performance for 

the heating season. Therefore, it is recommended to consider the HRW failure as well when developing AFDD 

tools for cooling season faults. 

4.1.4 BMS alerts 

A comparison of the faults prioritised in this research and the BMS alerts available in the market indicated 

that except for the fan stuck fault (heating season), an alert is available for the rest of the prioritised faults for 

the studied severity settings. An alert must be developed for the fan stuck fault. Additionally, when considering 

the rest of the faults, the stuck valve fault (for a value between 0 % and 100 % open), the leaky valve fault, 

the SAT sensor bias fault, the IAT sensor bias fault and the incorrect SAT setpoint (low & high) faults require 

the development of alerts to be raised when diagnosed by AFDD tools. 

4.2 Comparison of results with literature 

The results obtained in this study were compared with the results found in the reviewed literature. Across 

multiple studies, the faults relating to airflow such as outside air damper fully open/stuck [8,9,13,15,16], VAV 

box damper fully open/stuck [9,11,23], fan stuck at full speed [15] had the highest effect on energy 

consumption. In some cases, the CCV/HCV faults [8] and sensor bias faults [8,11–13,15] also had a 

considerable/comparable effect. In line with the literature, the results obtained from this study also indicate 

that fan failure, fan stuck, and valve (CCV/HCV) stuck faults have a significant effect on energy performance. 

The study of HRW failure is an addition to the list of faults studied in the literature and purely in terms of effect 

on energy performance, it has a higher effect than the other faults during the heating season. When 

considering the total energy impact (after incorporating fault occurrence frequency), fan failure, fan stuck, HCV 

stuck and HRW failure constitute the prioritised faults (when the Pareto principle is applied). 

4.3 Contributions, limitations and future research 

This research has made the following contributions to the scientific literature on simulation-based fault impact 

research: 

- Incorporation of real fault occurrence frequency: To the best of the authors’ knowledge, this paper 

represents the first research which has combined real fault occurrence frequency data from maintenance 

logbooks with a simulation-based fault impact analysis. This helps to quantify the total energy impact of 

faults. 

- Prioritisation of a small set of faults: The Pareto principle has been used to prioritise faults based on their 

total energy impact. This provides a cutoff criterion to select a small number of priority faults that have a 

very high impact on further focus through AFDD tools. 

- Study of existing BMS alerts: The prioritised faults have been compared with a list of existing BMS alerts 

to verify if sufficient alerts are present to notify maintenance teams about the diagnosis of those faults 

using an AFDD tool. This represents an important step in bridging the gap between research and practical 

implementation. 

Based on the results of this study, the next step is to develop an AFDD tool to detect and diagnose the studied 

faults, with a particular focus on the prioritised faults. The development of such a tool will expedite condition-

dependent maintenance. 

While the study has made significant contributions to the literature of fault impact analysis study, there are 

some limitations which must be addressed in subsequent studies. 

- The scope of this study was to prioritise AHU faults based on energy and frequency. However, faults can 

also affect the thermal comfort of occupants. Therefore, the inclusion of thermal comfort in this framework 

is a recommended future study. 

- For the word co-occurrence analysis, the hyper-parameter ‘window size’ was chosen based on research 

that focused on text written in grammatically correct English whereas the maintenance work orders were 

not only in Dutch but also need not necessarily have contained grammatically correct and full sentences. 
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To address this, a study on how to adapt the network clustering analysis to maintenance orders must be 

performed. 

- The fault frequency was mined from free-text fields in the maintenance orders. Different members of the 

maintenance team could describe the same maintenance problem differently. Additionally, the lexicon of 

keywords was deduced from Dutch translations of how the faults are named in the scientific literature in 

English. This could have resulted in some relevant results not being considered. The lack of standardised 

fault names could later hamper a meta-analysis of faults reported by FDD tools Chen et al. [43]. Therefore, 

it is recommended to first standardise the names of faults and subsequently incorporate fields with drop- 

down lists with the standardised names in maintenance orders so that all relevant results can be obtained 

through text mining. 

- The fault frequency was studied for faults pertaining to limited components of AHU. Extending the list of 

faults to not just more AHU components (e.g.: filters, humidistat, frost thermostat, dampers), but also to 

the entire HVAC system will provide crucial data about frequently occurring faults across generation, 

distribution, and transmission systems. 

- While the Pareto principle helped to prioritise faults, a key limitation of this method is that the faults that 

form a part of the prioritised list (through 80 % cumulative total energy impact) are subject to the number 

of faults simulated and their respective severities. One way to overcome this is to incorporate the prob- 

abilities of occurrence for the range of all plausible severities of all the studied faults, as performed by Li 

and O’Neill [9], so that the total of all energy deviations due to all studied faults (based on which the 80 % 

threshold is determined) is fixed. Thus, it is recommended to identify and include probabilities of 

occurrence of various severities for the simulated faults in future research. 
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5 CONCLUSIONS 

A fault impact analysis study was performed to prioritise acute AHU faults concerning CCV, HCV, fans, HRW, 

sensor bias and incorrect set-point. A building energy simulation model of a case study was developed using 

DesignBuilder and the studied faults were introduced and simulated using EnergyPlus. Fault occurrence 

frequency values were obtained from maintenance records over 5 years using text mining. The impact of the 

fault was defined as the product of the effect on energy performance and fault frequency. The Pareto principle 

was applied to prioritise the most important faults based on their impacts. A list of available BMS alerts was 

obtained and cross-verified with the prioritised list of faults. The main conclusions are as follows: 

- Fan failure, HRW failure, Fan stuck (50 %) and HCV stuck (0 %) are the prioritised heating season faults. 

- Fan failure is the prioritised cooling season fault. 

- From the list of prioritised faults, only the fan stuck at 50 % fault for the heating season doesn’t have any 

alerts in the BMS; the rest of the specific fault severity settings of the prioritised faults have an alert 

available in the BMS used in practice. 
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APPENDIX A: CASE STUDY BUILDING MODEL CONSTRUCTION 

INFORMATION 
Table A1 Ground and internal floor. 

Material Thickness (m) Thermal conductivity (W/m-

K) 

Density 

(kg/m3) 

Specific heat capacity (J/kg-

K) 

Urea formaldehyde 

foam 

0.0916 0.04 10 1,400 

Table A2: External floor. 

Material Thickness 

(m) 

Thermal conductivity (W/m-

K) 

Density 

(kg/m3) 

Specific heat capacity (J/kg-

K) 

Outermost layer 0.025 0.5 1300 1000 

MW stone wool (rolls) 0.1482 0.04 30 840 

Timber flooring 

(innermost) 

0.005 0.14 650 1200 

Table A3 Roof. 

Material Thickness (m) Thermal conductivity 

(W/m-K) 

Density (kg/m3) Specific heat capacity 

(J/kg-K) 

Board insulation 

(Glass fibre board) 

0.0829 0.036 160 840 

Metal deck 0.01 45.28 7,824 500 

Table A4: External wall. 

Material Thickness 

(m) 

Thermal conductivity (W/m-

K) 

Density 

(kg/m3) 

Specific heat capacity (J/kg-

K) 

Brickwork outer 0.105 0.84 1,700 800 

MW stone wool 0.05 0.038 40 840 

Concrete block 

(lightweight) 
0.15 0.19 60 1,000 

Plaster (lightweight) 0.013 0.16 600 1,000 

Table A5: Internal walls. 

Material Thickness 

(m) 

Thermal conductivity 

(W/m-K) 

Density 

(kg/m3) 

Specific heat capacity 

(J/kg-K) 

Gypsum plasterboard 0.025 0.25 900 1,000 

Air gap 10 mm Gypsum 

plasterboard 

0.025 0.25 900 1,000 

Table A6: Windows. 

U-Factor (W/m2-K) Solar Heat Gain Coefficient Visible Transmittance 

3.2 0.691 0.744 
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APPENDIX B: HVAC OPERATION SETPOINTS OF THE SIMULATION 

MODEL 
 

Winter Day Operation: 

- Air flow rate: 2.73 m3/s. 

- AHU maximum SAT (at the location after supply fan): 26 °C. North zone indoor temperature setpoint: 22.5 

°C. 

- South zone indoor temperature setpoint: 22 °C. 

- 1.05 zone indoor temperature setpoint: 20.5 °C. 

 

Summer Day Operation: 

- Air flow rate: 3 m3/s. 

- Minimum SAT (at the location after cooling coils) at outdoor temperatures of 20 °C and 30 °C respectively: 

North: 18 °C and 17 °C. 

- South: 18 °C and 17 °C. 

- 1.05: 18 °C and 16 °C. 

- Zone indoor temperature setpoint (all 3 zones): 23.5 °C. 
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APPENDIX C: LEXICON USED IN FAULT FREQUENCY ANALYSIS 
Table C1 Lexicon used to represent the studied AHU faults. 

Keyword in Dutch English translation 

regelafsluiter control valve 

hoog high 

regeling rule/regulation/control 

laag low 

cv central heating 

klep valve 

druk pressure 

toevoerkanaal supply channel 

toevoervent supply channel 

afzuigvent exhaust channel 

aanzuigkanaal supply channel 

setpoint setpoint 

opnemers sensors 

ventilator fan 

toevoerventilator supply fan 

snaarbreuk belt broken 

ruimtetemperatuur room temperature 

verwarmer heater 

afzuigventilator return fan 

sensor sensor 

sensoren sensors 

fout fault 

lekkage leakage 

warmtewiel heat recovery wheel 

inblaastemperatuur supply air temperature 

gewenste desired 

regelen rules 

storing failure 

verwarming heating 

opnemer sensor 

koeling cooling 

metingen measurements 

kapot broken 

afsluiter valve 

ventilatie ventilation 

gewenst desired 

koeler cooler 

thermostaat thermostat 

vast stuck 
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Keyword in Dutch English translation 

snaar belt 

hoge high 

lek leak 

snaren belts 

lage low 

meting measurement 

afwijking deviation 

afwijkingen deviations 

verkeerd incorrect 

verkeerde incorrect 

offset offset 
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APPENDIX D: EFFECT OF FAULTS ON ENERGY EXCHANGED AT 

THE HEATING AND COOLING COILS 
Table D1: Energy exchanged at the heating coil and Total HVAC consumption for selected faults. 

Fault Energy exchanged at 

the heating coil (kWh) 
Deviation (kWh) Total HVAC energy 

consumption (kWh) 
Deviation (kWh) 

Baseline 282.04 - 999.14 - 

HCV Stuck (0 %) 0.00 -282.04 886.77 -112.37 

HCV Stuck (100 %) 311.15 29.11 1005.89 6.75 

HCV Leak (0 %) 282.04 0.00 999.14 0.00 

HCV Leak (40 %) 282.04 0.00 997.83 -1.31 

Fan Failure 0.00 -282.04 762.67 -236.47 

Fan Stuck (85 %) 241.06 -40.98 967.65 -31.49 

Fan Stuck (50 %) 144.03 -138.01 881.03 -118.11 

HRW Failure 418.43 136.39 1316.17 317.03 

Table D2: Energy exchanged at cooling coils and energy consumption of chiller and pump for selected faults. 

Fault South 

zone 

North zone 1.05 

zone 

Total Energy 

Exchanged 

Deviation Energy Consumption 

(Chiller & 

Deviation 

 (kWh) (kWh) (kWh) (kWh) (kWh) Pump) (kWh) 

Baseline 83.16 101.09 41.94 226.19 - 67.02 - 

CCV Stuck (0%) 0.00 0.00 0.00 0.00 -226.19 0.00 -67.02 

CCV Stuck (50%) 86.64 100.56 43.54 230.74 4.55 81.82 14.80 

CCV Leak (0 %) 83.16 101.09 41.94 226.19 0.00 67.01 -0.01 

CCV Leak (40%) 85.86 101.19 42.93 229.98 3.79 81.25 14.23 

Fan Failure 0.00 0.00 0.00 0.00 -226.19 0.00 -67.02 

Fan Stuck (85%) 75.80 97.11 39.52 212.43 -13.76 66.07 -0.95 

Fan Stuck (50%) 50.60 64.80 26.24 141.64 -84.55 51.62 -15.40 
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APPENDIX E: REACTION OF MASTER–SLAVE CONTROLLERS TO 

SENSOR BIAS AND INCORRECT SETPOINT FAULTS 
Table E1 The reaction of master–slave controllers to sensor bias and incorrect SAT setpoint faults during the heating season. 

Fault Master-slave controller reaction: heating season 

SAT Sensor 

Bias (+2°C) 

 
Overall, there is a decrease in energy transfer across the heating coil. 

SAT Sensor 

Bias (-2°C) 

 
The effect of this fault should be (partly) compensated by the master-slave controller. Overall, energy transfer 

at the heating coil increases. 

IAT Sensor 

Bias (+2°C) 

 
Overall, there will be a decrease in energy transferred at the heating coil. 

IAT Sensor 

Bias (-2°C) 

 
Overall, it is expected that there will be a negligible change (increase) in energy transfer at the heating coil. 

Incorrect 

SAT 

Setpoint 

(+2°C) 

 
Overall, it is expected that there will only be a minimal change (increase) in energy transferred at the heating 

coil if any. 

Incorrect 

SAT 

Setpoint  

(-2°C) 

 

Overall, it is expected that there will be a decrease in energy transfer at the heating coil. 
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Table E2: he reaction of master–slave controllers to sensor bias and incorrect SAT setpoint faults during the cooling season. 

Fault Master-slave controller reaction: cooling season 

SAT Sensor 

Bias (+2°C) 
 

 

 The effect of this fault should be (partly) compensated by the master–slave controller. Overall, energy transfer 

at the heating coil increases. 

SAT Sensor 

Bias (+2°C) 
 

 

 Overall, there will be a decrease in energy transfer at the cooling coil. 

IAT Sensor 

Bias (+2°C) 
 

 

 Overall, the energy transferred across the cooling coils will decrease and if the cooling coils will open will 

depend on how much the IAT value increases. 

Incorrect 

SAT Setpoint 

(+2°C) 

 

 

 Overall, it is expected that there will be a decrease in energy transfer across the cooling coils 

Incorrect 

SAT Setpoint 

(-2°C) 

 

 

 Overall, it is expected that there will be a negligible/small increase in energy transfer at the cooling coils. 
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APPENDIX F. SUPPLEMENTARY DATA 
 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.enbuild.2024.114476. 
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