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Summary

This researchpresents an innovative approach to modeling and predicting the heating and
cooling demands of buildings using a simple and fastdiaan model. The research is set
within the context of Model Predictive Control (MPC) systems, which optimize buildingyene

use by predicting variables and adjusting control inputs accordingly, embodying the principles
of industrial ecology by integrating technical, economic, and social dimensions of
sustainability enhancing energy efficiency, reducing £€nssions, and improving occupant
comfort, which are key goals of industrial ecologyom the available modelling methods:
white, black, and grey box modete model and predict the heating and cooling demand, a grey
box modelmultivariate linear regression model with as input actual silected based on the
thermal energy balanandPearson correlation coefficien# case study omwo rooms: an

office and a classroom the Haagse Hogeschool in Dedtrves as the practical application of

the developed modeSeveral models are developexiatic and dynamic models, and using
different independent variables; indoor surface temperature, outdoor temperature, indoor air
temperature, internal heat gains, wind speed and solar light intehsitguracy, expressed in

the R valuebetween22.52% and 78.57% is achiewaith modelling the heating and cooling
demand The developed models are not able to predict the heating and cooling ddmaial

multicollinearity between independent variables, overfitting emtbgeneity.
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1l ntroductio

The biggest 21st-century challenge is reducing climate change. The weather patterns of the
earth are changing due to the increase in greenhouse gas emissions since the Industrial
Revolution in the 18th century. Greenhouse gases include C®@, CH., N2O, Sk, and NFs. HFK,
CFK and PFK(Calvin et al., 2023). An increase in these greenhouse gasses in the atmosphere
causes an increase in heat absorption in the atmosphere(Calvin et al., 2023). A big share of
this heat is absorbed by the earthés surface. TI
and a part of this heat is emitted back to the atmosphere, however, due to the greenhouse gases,
a part of this heat is reflected to the earth's surface. The changing weather patterns have a
negative effect on the environment which affects human society (Calvin et al., 2023). Effects of
climate change are increased sea levels, higher temperatures, losses of biodiversity, more
extreme weather conditions, melting of permafrost, pressure on ecosystems, and a threat to

food supply security (Calvin et al., 2023).

To reduce these effects of climate change on the environment there are international
treaties between countries. The front-runner was the Kyoto Protocol, signed in 1997( Car y &
St e p hen sAfollean0up 4reaty is the Paris Agreement in 2015, where the goal is set to
reduce global warming to 1,5 degrees Celsius, with a maximum of 2 degrees CelsiudJNFCCC),

2015). To achieve these goals, each involved country must translate this into policies. In the
Netherlands, an agreement (Klimaatakkoord) was reached between the Dutch government and
companies in 2019 (Dutch Parliament, 2019) . The Dutch climate goal is to reduce the national
emissions of greenhouse gases to 55% by 2030, in comparison to 1990, th@ursuance is to
reduce to 60%. In 2050, the Netherlands should be climate neutral. Agreements are made for

the sectors; of electricity, built environment, industry, mobility agriculture, and land use.

A key player in the energy transition to achieve the climate goals is the building sector.
In the European Union, the building sector consumes 47% of the final energy demand to heat
and cool buildings. Within households, 86% of final energy use is used forheating, commerce,
services, and agriculture this share is 76% (Santamarta et al., 2021). Within the
Klimaatakkoord the goal is set for the building sector to be CQ neutral by 2050. The building
sector needs to increase energy efficiency, save energy, and integrate renewable energy sources
into the supply of energy (Dutch Parliament, 2019). To integrate more renewable energy
sources, besides the use of green electricity, more renewable energy sources are needed to be

used to heat and cool a building.



The context of this research is shown in Figure 1. The assumption is made that the
building relies solely on electricity, with no connection to the gas grid for heating and cooling.
The current electricity production includes both green electricity from renewable sources like
wind and solar, and grey electricity from fossil fuels. As the production of green electricity
increases, there is a decrease in the use of fossil fuels, resulting in lower C®emissions.
However, the growing production of renewable energy sources, including prosumers, is putting
pressure on the electricity grid, leading to imbalances and network congestion.

To address this issue, there is a need to optimize the electricity demand and supply
using model predictive control (MPC). With MPC, data is collected from the electricity supply,
the grid, and the building, and is used to predict electricity consumption f or heating and
cooling, as well as the production of renewable energy. This allows for the adjustment of
electricity demand during times of high green electricity availability, leading to lower CO »
emissions, increased usage of renewable energy sources, kenced electricity, reduced network
congestion, and the possibility of reducing the electricity bill .

Figure 1 illustrates the relationship between renewable energy sources, fossil fuels, the
electricity grid, and buildings. The green dashed arrows represent data collection and

optimization flows as part of MPC, highlighting the feedback loop within the system.

In the context of industrial ecology, this research emphasizes the interaction between
different components of energy production, distribution, and consumption. Industrial ecology
focuses on optimizing resource use and minimizing environmental impact throu gh a holistic
approach. By integrating renewable energy sources by employing MPC, the system achieves
higher efficiency and sustainability, embodying the principles of industrial ecology. This
approach not only reduces CQ emissions but also enhances the esilience and reliability of the

electricity grid, promoting a more sustainable and balanced industrial ecosystem.
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This research is part of the Brains4Building project, a multi -stakeholder and multi -
year initiative aiming to research and develop a Model Predictive Control (MPC) framework
for buildings. The goal is to reduce energy consumption, increase comfort, respond flexibly to
user behaviour and local energy supply and demand, and save on installation maintenance
costs (by fault detection). Part of that project is to develop a model to model and predict the

heating and cooling demand.

This study focuses on modelling and predicting the heating and cooling demand of
buildings as part of MPC, using a simple, fast, datadriven multivariate linear regression model

based on the thermal energy balance and with the use of actual data (grey boxnodelling) as
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part of Model Predictive Control (MPC). Traditional models: white box and black models, have
limitations in terms of complexity and data requirements ( Ras ool i & .IThiar d, 2 C
research aims to address these limitations by developing a model that leverages measurable

data inputs like indoor surface temperature and outdoor temperature.

The primary objective of this study is to determine whether it is possible to model and
predict the heating and cooling demand of a building for seven hours in advance using actual
data. This involves developing a model that can be validated with realworld data and refined
to improve accuracy by adding and removing variables. The case study for this research is the
Haagse Hogeschool building in Delft, a highly energy-efficient building equipped with
advanced heating and cooling systems, which enable the us of realtime data. The following

research question is asked:

Is it possible to model and predict for 7 hours in advance the heating and cooling
demand of a building during opening hours with actual data as input for a simple, fast and

data-driven model?

The following structure will be followed. To answerthe main research question is divided into
sub-questions and report chapters. A research flow diagram, is shown in Figure 2. First, a
literature review is conducted to further explain model predictive control and the potential of
modelling and predicting the heating demand, to emphasise the social and academic relevance
of this study. After this, the existing modelling and predicting models to model and predict the
heating and cooling demand are explained, to identify the most fit to purpose modelling
method. After the literature review, the model methodology including the required data inputs.

Thereby the following sub-research question will answered:

What are the data inputs of the multivariate linear regression model and which statistical
validation and search process are used to build the model?

This model is applied to a real case study: the Haagse Hogeschool in Delftwhere the selected
rooms are explained, data from these room is gathered. For each variable, it will be discussed
how the data is collected and if the data is complete, whereby the following sub-research

guestion is answered:
How is the required data collected for each variable, and is this data set complete?

To understand how the variables are correlated to the heating or cooling demand, a data
analysis is performed with the use of the Pearson-correlation coefficient . This gives insightinto

the accuracy of the model. The following sub-research question is answered:

How are the variables and the heating and cooling demand correlated to each other, and

which variables will significantly  contribute to a higher model accuracy?

11



Models to model and predict the heating and cooling demand are developed. Different
combinations of variables and time delays will be used. The following sub-research question

will be answered:

What is the best combination of independent variables in the model to achieve the highest
accuracy in modelling the heating and cooling demand?

12
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of the office. Af ter that , the potenti al of mo c
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with the connection to the field of Industrial E
explain the different model approackdsmodertbt. what

2.1. Model Predictive Control (MPC)

Mo d el Predictive Control ( MPC) is a control str
HVAC and other (heating and cooling) building s}
and ma&djnpgst ments to contr ol i nputs accordingly
optimization problem that aims for example to
renewabl e energy sources (RES) (during a high s
comf o€hen & Yawh, | 20Zd)Nsidering system dynamics
MPC, buildings can effectively manage energy usa
occupant comfort and mOmretofithe ghairochadlenges for evidesgready o al s
application of MPC is the development of a userfriendly, control -oriented, accurate, and
computationally efficient building modelling ( Dr go Ra et. al ., 2020)

Figure 3 shows the controlled physical system: the building. The room temperatures (U are
affected by (A , as weather conditions, they are predicted by weather forecasts &) and heat
flows through the building ( §). The estimator estimates the effect of the room temperatures on
the building s thermal mass temperatures (4. The predicted building thermal mass and the
predicted disturbances (A) are usedas data input for the building model . The building model
predicts the future building thermal mass temperatures for 1 timestep later (8 ). With these
predictions, the cost function and constraints (for example thermal comfort ranges) are used
to solve the optimization problem, which results in a cost-effective heat flow (§ within the
thermal comforts and that the actions are feasible and safe. This is a constant loop, where
prediction is done for the building surface temperatures and the disturbances, whereby a

prediction horizon (. ) is stated (for example a prediction of 7 hours).
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Part of an MPC is the required building energy simulation tool. The development of these tools

emerged around 50 years ago and can be divided into four generationgKwak et al., 2015).
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2.2. Potential of modelling and predicting heating and cooling
demand

The aim of the second part of the literature review is to explain the scientific and social
relevance of the development of a fast simple datadriven model to predict the heating and
cooling demand of a building as part of a model predictive control (MPC). The following sub -

research question will be answered:

How could predicting the heating and cooling demand contribute to reducing the

environmental impact of the building sector?

The energy demand of a building is determined by the outside temperature, physical building

characteristics, socioeconomics, and occupant behaviour and preferences(Peplinski et al.,

2024). The decarbonization of the energy system in the Netherlands requires a change towards
smart grids and buildings (Lund et al., 2014; Marszal-Pomianowska et al., 2024; Norouzi et

al., 2023). A prediction of the heating and cooling demand as part of Model Predictive Control

(MPC) of a building is required to achieve demand flexibility (S. Yang et al., 2024) The

potential of forecasting the heating and cooling demand of a building to reduce the

environmental impact of the building sector is divided into three dimensions; technical,

economic, and social.

Before the potential of predicting the heating and cooling demand can be described, it is
essential to explain how the supply of heat or cold is connected to the electricity grid. The
heating demand in the Netherlands is mostly supplied by the direct use of fossil fuels in
buildings, this is mostly natural gas. In the building sector, there is of electrification, this is the

transition from the use of fossil fuels to the use of electricity (from renewable energy sources).
An example of this is the replacement of a natural gas boiler with an (electrical) heat pump to
heat or cold a building. In this way, the heating and cooling demand is getting more connected

to the electricity grid (Hoseinpoori, 2022).

2.1.1 Technical potential

Integration of renewable energy resources

More distributed energy sources: PV panels, wind turbines, heat pumps, or electrical vehicles
are connected to the grid, to decarbonize the electricity grid (Hennig et al., 2023) . Most of these
renewable energy sources are dependent on weather conditions, for example, the electricity
supply generated by solar panels is dependent on the amount of solar radiation. The
integration of renewable energy sources into the electricity grid, requires balancing between

demand and supply, ensuring supply security and avoiding network congestion (Norouzi et al.,

17



2023; S. Yang et al., 2024) The increasing amount of intermittent electricity generated by

renewable energy sources requires more flexibility in the demand ( M¢ | | er & M° st

Forecasting the heating and cooling demand contributes to this, which results in a reduction
of imbalances on the electricity grid, to reduce network congestion, and to reduce CQ
emissions. The reduction of these three problems is interdisciplinary as among others social

costs are reduced(Hennig et al., 2023).

Imbalances

The amount of electricity supply and demand needs to be always in balance to secure stability,
reliability, and efficiency of the electricity grid (ChavesAvila et al., 2013). When there is an
imbalance in the electricity grid, this gap is filled with reserve power plants. In the Netherlands,
the transmission system operator (TSO), TenneT is responsible for keeping the electricity grid
in balance (Chaves-Avila et al., 2013). The peak hours of demand and supply coincide less when
there is a higher share of renewable energy sources integrated into the electricity grid as shown
in Figure 4 (Goodarzi et al., 2019; Laugs et al., 2020)

Network congestion

The integration of renewable energy sources as part of the energy transition leads to an
increase in electrification (Hennig et al., 2024; Norouzi et al., 2023; Peplinski et al., 2024) .
Another part of the energy transition is the decentralization of electricity generation. There is
more pressure on the electricity grid, which is not designed for an increasing load, and the
problem of network congestion has emerged (Hennig et al., 2023; Norouzi et al., 2023) .
Network congestion occurs on an electricity grid when the predicted demand load exceeds the
capacity of the network (Hennig et al., 2023) . In the Netherlands, more regions must challenge
network congestion. For parts of the Netherlands, it is harder to get a new connection to deliver
to or to consume from the electricity grid (Hennig et al., 2024) Network congestion is shown
in Figure 5 for off-take capacity and input capacity in Figure 6 (Netbeheerder Nederland,
2024).

A strategy to alleviate network congestion involves shifting the peak hours of demand to align
more closely with the peak hours of supply, a practice known as load shifting, a form of network
congestion (Hennig et al., 2024; Rodrigues et al., 2022; S. Yang et al., 2024) This concept is
illustrated in Figure 7, which demonstrates how load shifting can help mitigate network
congestion. Through load shifting, the grid can better accommodate fluctuations in renewable
energy generation, ensuring a more stable and efficient supply of electricity to consumers
(Rodrigues et al., 2022). This load shifting can be done by several endusers of the electricity

grid. For example, on the Dutch market, it is possible to smart charge an electrical vehicle
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during peak hours of energy supply, consumers receive compensation for this, or the heating
or cooling demand of well-insulated buildings could be flexible (Hennig et al., 2024). In
Norway, research is done about the possibility of load shifting in an educational building. This

research showed that a reduction of 50% of the load during peak hours by using a model

predictive control (MPC) was possible, whereby the daily energy usewas not significantly
increased (Clauf3, 2024)

‘Middelburg

Bruxelles Leuven Maadttt
b= Wawre f e 2y o o, o
Figure 3: Offtake capacity map of the Netherlands on Figure 4: Input capacity map of the Netherlands on
March 14, 2024 (Netbeheerder Nederland, 2024) March 14, 2024 (Netbeheerder Nederland, 2024)

Legend: Within the red areas no transport capacity is available, and no congestion management is possible.
Within the orange areas, no transport capacity is temporarily possible, and congestion management is
investigated. Limited transport is available wit hin the yellow areas. Transport capacity is available in the
transparent areas
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Figure 5: Daily profile of the renewable energy supply by photovoltaic and wind production, the electricity

power and heat load (Yang & Jiang, 2024)

CO, emission reduction

The emission of CG within a building depends on the building characteristics and the type of
energy used to meet the energy demandPino-Mejias et al., 2017) Energy use within a building
can be divided into; primary and secondary energy (Pino-Mejias et al., 2017; Pulido-Arcas et
al., 2016). Primary energy is extracted or captured directly from natural energy sources.
Examples are most of the fossil fuels than can be directly used in a building, for example, to
heat a building with natural gas. The impact of these sources can be reduced by increasing the
efficiency of using energy sources with lower CQ emissions. The second category of energy is
energy generated somewhere else and consumed within the building, for example, electricity
generated by a power plant. Each type of energy has a g¢aon dioxide equivalent emission
factor (CO2-eq) (Pino-Mejias et al., 2017; Pulido-Arcas et al., 2016)

Energy efficiency

With forecasting the thermal energy demand, the used energy resources can be used more
efficiently (Kathirgamanathan et al., 2021; S. Yang et al., 2024) By accurate prediction of the
heating and cooling demand, the building management systems can adjust heating and cooling
schedules to meet the predicted demand. In this way, the building will only be heated and
cooled when there is a demand. Energy wastewill be reduced by preventing underheating or
overheating of a building.
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In the research of Merema et al. (2022), several model predictive control frameworks are
compared on, among others, energy efficiency. The case study wasa university building in
Belgium. The highest heating demand (all-air installations) reduction of 55%was achieved by
a grey box model: RC models (se€hapter 2.2.4) and occupancy-based temperature setpoints.
A simplified calculation results in a reduction of 272.78 MWh on the yearly scale for the case

study Haagse Hogeschoo] when the yearly electricity consumption is estimated based on data

fromCentr aal Bureau voor de (8083kWhsperim@katd5936adast er

MWh.

2.1.2 Economic potential

Reducing energy costs

The challenges of imbalance on the electricity grid and network congestion emerged a growing
interest in demand-responding mechanisms; market-based methods, network
reconfiguration, network reinforcement, and dynamic prices (Hennig et al., 2024) . Besides the
reduction of energy costs through a higher energy efficiency, there is the potential for a lower
energy bill by dynamic prices (S. Yang et al., 2024)

Nowadays, the electricity price for consumers is stated in energy contracts between theenergy
supplier and consumer for a fixed period (mostly 1 or 3 years) or 3 months. Energy for these
types of contracts is purchased on the forward market, in the Netherlands (Pollitt et al., 2024) .

Instead of a fixed or flexible energy contract, there is also the option for a dynamic contract,

whereby the energy is purchased onthe sameday Mi | et i | et al ., 27The2;

dynamic electricity price is determined by the hourly energy demand and supply curve. In the
moments when there is more supply than demand, it is possible to get a negative price, so

consumers are paid to use electricity at this moment. A higher price is paid in the moments

Pol

when there is more demand than supply( Hof mann & Lindber g, 2024; Mi

This financial incentive has the effect of demand shifting from periods with low supply and

high demand to periods with low demand and high supply. The hourly maximal consumption

will be reduced and distributed over the day. AstudyfromHo f mann & Li ndbboutr g

dynamic electricity contracts in Norwegian concludes that these types of contracts result in
savingsin the hourly electricity demand and there is the potential to lower the energy bill for

consumers when there is the possibility to shiftthe demand ( Mi | et i I et al .,

However, the electricity prices are not connected to the CQ emissions, which results in not a
direct reduction of the CO, emissions ( Da h | Knudsen &. TReeother opsion is,
to couple the heating and cooling demand with the objective of CO, emission reduction. In this

case, the load will be shifted to periods of low CQ emissions. The disadvantage of this approach
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is the not direct connection to the load. To achieve the highest CQ reduction the heating and
cooling demand needs to be connected to a combination of energy prices and C@emissions
(Dahl Knudsen & Petersen, 2016)

2.1.3 Social Potential

Environmental, Social and Governance (ESG) reporting

Stock market-listed companies are obliged to report on Environmental, Social and Governance
(ESG). Within this framework, non -financial indicators are documented, and companies are
allowed to choose their indicators within these three dimensions (Ferreira-Quilice et al., 2023).
This needs to be done for the whole chain; from the inside-out perspective (regarding the
output of a company) and the outside-inperspective (regarding the input of a company)
(Ferreira-Quilice et al., 2023). The first dimension: environment includes the direct and
indirect impact of the company on the natural environment. The circumstances for the
employees are covered in the second dimension: social. The last dimension: governance, refers
to the way a company is managed. Besides the fact that ESGs are mandatory for stocknarket
companies, it is also preferable to report these ESGs (which can be expressed in a score (A, B,
etc.)) for the position on the market, as the output of the company could be the input of a
company (Bonacorsi et al., 2024). Predicting the heating and cooling demand could be used to
report the dimension environment, estimate the heating and cooling demand and the potential
CO; reduction, and contribute to higher energy efficiency and lower energy costs. Forecasting
the thermal demand could indirectly contribute also to higher thermal comfort, which satisfies
the employees within the social part of ESG.

2.2. Modelling and predicting heating and cooling demand
model methods

This research aims to develop amodel and predict the heating or cooling demand as part of a

Model Predictive Control system, therefore following sub-research questionis be answered:

Which models are usedwithin Model Predictive Control to model and predict the heating

and cooling demand of a building?

The choice of the used model method is based on the available information and the prediction
accuracy(Liet al., 2014). The types of data processing and analysing could be broadly classified
based on the modelling method and the modelling problem into three models; white, black and
grey box (Joseph Thaddeus et al., 2021) First, the thermal energy balance and the difference
between static and dynamic modelling are explained.
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2.2.1 Modelling background theory

Thermal energy balance

Analysing the thermo-physical properties of a building is an essential step for understanding
the thermal performance of a building, leading to an estimation of the potential for energy -
saving( Rasooli & Iltard, 2020)

Laws of thermodynamics

There are many forms of energy; kinetic energy, mechanical energy, electricity and heat among
others. The first law of thermodynamics states that no energy can be wasted or createdltard,
2011). Energy could only be converted to another form of energy, for example, electrical energy
to kinetic energy. In other words, the quantity of energy does not change. However, the second
law of thermodynamics states that natural processes lead to both an ircrease in entropy and a
decrease in the exergy of a systengltard, 2011). Entropy is the degree of disorder, also called
irreversibility. Exergy is the maximum amount of work available. High -quality energy forms
(relatively high amount of exergy), such as mechanical work or electricity, can be fully
converted to lower-quality energy forms (relativity low amount of exergy), such as heat. The
reverse is not possible, heat cannot be converted to electricity with 100% efficiency (ltard,
2011).

Energy flows

Heat can be transferred through conduction (direct contact between materials), convection

(movement of fluids or gases), and radiation (emission of electromagnetic waves)(ltard, 2011).

The thermodynamic principle of conversion of energy is the base of determining the energy
balance, by inventorying the entering and internal energy flows in a building. There is a heating

demand when the energy balance is negative. The buildings need tde cooled when the energy
balance is positive. The energy balance within a steadystate situation for every time interval

is calculated with the following formula (ltard, 2011):

Within the energy balance of a building the three types of heat transfers are combined into four
key energy flows: transmission, ventilation and infiltration, internal and, solar radiation. These

energy flows are influenced by building characteristics, thermal comfort standards and
outdoor climate (Itard, 2011). An overview of the terms of each variable can be found in

Appendix A.
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Transmission heat losses occur due to a difference in inside and outside temperature
Y Y through the envelope of the building and the ground °Y
Y . The heat flow through the building depends on the transfer coefficient (),

determined by the combined thermal conductivity of a material for convection and radiation,
the wind speed, and the thermal resistance of the composed wall (Van Bueren et al., 2011).
Heat transmission through the envelope is a sum of the four facades, dg@endent on the
orientation and the roof.

0 B "Y o)) 2"y Y )

¥ Y D Q7Y Y (3)

Ventilation is the aimed natural or mechanical air flow from between inside and outside and
infiltration of air through cracks of the building construction. Flowing air is required to meet

the thermal comfort standards of among others air quality (measured by the CG; level) and for
security reasons(Itard, 2011). The ventilation and infiltration heat gains are calculated by the
mass flow rate of the entering air 1), multiplied by the heating capacity of the air ( i )and

the difference in the temperature of the air out of the AHU and the indoor air in the case of

ventilation Y Y or the temperature difference between the outdoor and
indoor air for infiltrations Y Y
0 a 265 Y Y (4)
0 a a 4 Y Y (5)

Internal heat gains are produced inside the building by people and electrical appliances (Itard,
2011). The heat gained from the human body depends on activity, worn clothes, air
temperature, and humidity 0 . With these conditions and the occupancy (¢ ) of a
room or building the internal heat gains from people could be calculated. Another internal heat
gain is electrical appliances, by using these appliances heat is released. This could be divided
into heat gains from lighting (0 ) and equipment 0 ), where the released heat is
determined by the type of lighting and equipment (Itard, 2011). The internal heat gains are

calculated with the following formula:

£
(@}
©)
C

§ € oy] 0

(6)
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Solar radiation (in the forms of direct radiation (0 ), reflected radiation (0 ), and
diffuse radiation (0 ) influences the energy balance with the radiation entering the
building through the windows and the absorption of the heat by the envelope. The impact of
solar radiation is dependent on building characteristics such as orientation, size, and windows.
The assumption could be made that the heat absorbed by the envelope of a building could be
neglected in the case of a welinsulated building (Itard, 2011). Solar heat gains are calculated

by the formula:
0 0 0 0 (7)

Heat is not absorbed by air; heat is accumulated in the thermal mass of a building. Th er ma |
mass refers to the ability of a materi al t o
Materials with a high ability to store heat, that have a buffering effect on temperature
fluctuations, have a high thermal mass (Itard, 2011). When the temperature of the surfaces is
higher than the air temperature, the air is heated up by the thermal mass. This phenomenon
occurs, for example, during the night, when the thermal mass is heated up by solar radiation
during the day and released into the air during the night (shown in Figure 8) (Itard, 2011).

Time 11 Time {2 Time t3 Time t4

Figure 6: Absorption of heat by the thermal mass of a building. The heat from solar radiation accumulates
over the day and is released during the night when the air temperature is lower than the surface temperature
(Itard, 2011)

Heat gains from the accumulated heat within the thermal mass of a building are calculated
with the formula ( Itard , 2011):

0 B| 20 2°Y Y (8)

Equation 8 is a static model, where no time delay is included, in contrast to a dynamic model.
The total heat gains from the thermal mass is determined by the sum of the heat transfer

coefficient of the concerned surface ( ) multiplied by its surface 0 and the temperature

difference between the surface and the indoor air Y oY
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Static and dynamic modelling

A model can be static or dynamic. In the case of the thermal energy balance, the heating or
cooling demand is modelled at moment t, with the data of moment t , in other words there is
no time dependency. In this formula there a no time delays used. An overview of the formulas
used in the thermal energy balance, and the used variables with the units can be found in
Appendix A.

~ N ~ N ~
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0 v 0 U 0
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Within these models, a single node is used(mostly the air temperature). A node in a thermal
model represents a discrete point where temperature is measured or calculated. It is a location
where thermal properties such as temperature, heat capacity, and thermal resistance are
defined.

However, as previously described, there is a delay in the heat gains from solar radiation,
absorbed by the thermal mass of a building, on the heating or cooling demand. In Figure 8,
heat from solar radiation is absorbed by the thermal mass during the period between t1 and t3.
At time t4, there is no solar radiation, and the air temperature is lower than the surface
temperature, the accumulated heat is released to the indoor air in the room. So, in this case,
the heat gains from solar radiation can be seen dter 4 hours in the temperature of the indoor
air. Other heat gains as internal heat gains and the heating supply are also accumulated by the
thermal mass. Within dynamic models, this delay is included by including some variables from
times before t. For example, the indoor surface of 4 hours before, the moment the heating or

cooling demand is modelled.
There are different methods to cope with this time dependency.

The first possible method is making the whole model dynamic by introducing partial
differential equations. Partial differential equations (PDEs) are a type of mathematical
equation used to describe the distribution of heat (or other quantities) in a given space and
time. They allow for a more detailed and precise representation of the physical processes
involved in heat transfer, taking into account the spatial and temporal variations within a
system. They can be solved with formulas in the case of simple dfferential equations. When
these equations becomes complex, the Resitance&Capacitance model (Rastegarpour et al.,

2020) or the Response Factors can be used

The first method isusingRe s i sifCapaei t and &kcmondbaled s ) . I n this m
nodes (for exampl e, surface temperatures, out do
model |l ed as part of a ther mal net wor k, where t he
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each sur f(Bae her & ™MadJ3ans mode) i s furtz2hdr expl e
Thi s mo dResponsesFadors (Itard, 2023) . The thermal nodes within a room are

connected by heat fluxes. Within the method for each node, an energy balance is described. An

example is the room in Figure 9. With three thermal nodes; glass wall, indoor air and the

(thick) back wall.

Ceiling
Sun
Back wall
.T1 .‘ —r Ta

Glass wall T2

Floor
Fi gursempl i fied drawing of a room with temprer aftruame st meodes,
perspective of & helhtehédremd!| imodecumul at ed (ahderaealde as2e0d2 3wWi t F

The energy balance for the thermal node of the back wall is described in Equation0.

B8 % 1 By Y 0B "B map
Wi t h

T Il-@anid: heat transfnesn deoafnfdi oiud rsti d e
T 06 weg®: surface area of the back wall and the
T 'Y temperature
9 0 :solar radiation
T ==~ theromaluctivity
T 6:specific heat capacity
T ati me

T " density
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The last part of the Equation 10: _— " 3 Q_—, described the thermal behaviour within

in this case the back wall This can be replaced by using response factors(®y) and time
dependency, as shown in Equation1l

| Do8Y % i B Y % 0 Do ea I @I &IPS

m(ln
I n this Equation, there is a time dependency of
when the ther mal mas s of TBhesb fadtolsdre cafpulated forraxlo m i nc 1

surface, describing the thermal performance of a wall and not describing what happened in the
wall. These factors are calculated by describing the heat flux of both sides of the wall by a

temperature change.

2.2.2 White box modelling method

The models built with this approach are based on the known physics of thebuildings which are

used in mathematical equations based on physical knowledge (Boodi et al., 2018; Ghiaus,

2014). These models are based on the principles of heat transfers and conservation of energy
andmass( Dr g o Ra e t Thaadvantag® df the@e) models is that thevariables and results

of these models are interpreted in physical terms, which makes these models transparent.

However, the input parameters are often unknown, besides that, these parameters are not

often representative of the real building. Because these models includemany parameters,

which are often unknown, this complex model is not representative of the building ( Ras ool i &
I'tard, 2018; .liYthe case thadthe paranmt@rg of the white box model are known

and accurate, a higher accuracy can be achieved Dr g o Ra e t. Thask madels2at 2sed

by different researchers (Coffey et al., 2010; Corbin et al., 20130 couple them with an
optimization problem with MPC, however , these schemes werecomputationally expensive
(DrgoRa et.Babidego2bhnt, whi ¢ &s smtoadl eal bsl ¢aor oep tnhostm a
buil diKHhgasnat sky .et al ., 2023)

An example of a white box model is the Low Energy Architecture model (LEA) developed by
Deernswhi ch <cal cul ates hourly energy needs for he:

ventilation, (dnd aeddguiLpmamt p2C®Md7i)ts ther mal ener ¢

energy demand to maintain indoor air temperatur
bal ance. This model hasesad dym aanirce igutad nfamrsnteltevor
time delay of the effect of the ther mal mass by
to the ot her i ndoor sur faces, WhHivec lmdar & -.iprezg o r2t04d

Energy+ is another example of ahinbeamdddIhlabenld ol | o

Ama Gonzal o .etThals. mod(23)is a comprehensive build

28



that can simul ate heating, cooling, l'ighting, Vo

Similar to LEA, Energy+ uses detailed physical

and syc6belms Ama Gonzal o Esmtergly+, i 802a3)dynamic mod
performs destabphedd simel ations of building enerc
changes and fl uc(tuelt i omas @oreza.ltdHote vadr.,, 12i0kke3 )ot |
box models, the accuracy of Energy+ depends on
which can be a |imitation when input parameters
of thworledl sc@emlarAma Gonzalo et al., 2023)

2.2. 3 Black box modelling method

The black box models are datadriven and statistical models based on the principle of machine

learning (Kamel, Sheikh & Huang, 2020; Wei, 2018). These models use mathematical

equations from statistics. These statistics are built on influential inputs to th e outputs. A

system is modelled as a box, whereas the parameters are unknown. The input of these models

is data from sensors in the building. More buildings are equipped with smart meters. Data from

these reattime measurements have an increasing potential for energy monitoring ( Ras ool i &
I t ar d,. THe @ddndage of these models is that not all building parameters are needed,

because of this it takes less time to develop. The biggest disadvantage of these models is that it

is harder to interpret the results of this model to better manage the heating and cooling

demand of the building in response to the energy supply (Jurado Lopez, 2017). Bl ac k b o X

model s are easwbr-bh@ hbhudélse \ham, a |l arge dataset
this MmM&bahat sky et al ., T2h0e2 3perYfuoremanale. ,0f 2 Qrib4d)e.
control (MPC) relies heavily on the quality of n
buildLhg et .Bl ag&kX20mB@aldel s fall short in this asp
physically interpretable, making them | ess suit:
(Kl anatsky .et al ., 2023)

Gradient Boosting is a black box model that builds an ensemble of decision trees incrementally.
Each new tree corrects the errors made by the previous trees, resulting in a highly accurate
predictive model. Gradient Boosting is effective for capturing comp lex patterns in energy
consumption data but can be computationally intensive and harder to interpret due to its

complexity (Guo et al., 2023).

Random Forest is another black box model that creates an ensemble of decision trees. Unlike
Gradient Boosting, it builds each tree independently using a random subset of data and
features ( D Per si o & FiThascrethad ¢ Irobust aritl 0e8s3pjone to overfitting

compared to single decision trees. It is also easier to implement and understand than Gradient
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Boosting, although still less interpretable than white -box models ( D i Persio &
202.3)

Another model built with the principles of black box modelling is Artificial Neural Networks
(ANN) (Veljkovic et al., 2023). This model approach is inspired by the structure and function
of biological neural networks in brains, where nodes are connected by edges. Via these edges,
signals are given to the nodes, which results in an output described by a nonlinear function
based on the inputs. The benefits of these models to predict the heating and cooling demand
are the accurate approach to include the nortlinear relations between the parameters, accurate
prediction with a minimum amount of input parameters, and easy implementa tion with a fast
result (Veljkovic et al., 2023).

2.2.4 Grey box modelling method

For making a black box model a complete and large dataset is needed to achieve a high
accuracy. Where for white box models the disadvantage is the lack of known building
characteristics. The advantage of white box models is that the results can be physicdy
interpreted, which is harder for black box models (Foucquier et al., 2013). A model in which

the disadvantages of both the white and black models are resolved is the grey modelling
approach (Kroll, 2000) ( Bacher & Madsen, 20 1These ndels arebased e t
on known physics of the building as on real-time data, which is obtained from sensors in the
building ( Ras ool i & | tard, 2.0Mt8this dita a gpt oBequétions isdIt0 6 )
by the model to determine the parameters( Ras o o | i & .ltard, 2020)

In the research of (Veljkovic et al., 2023), a white box model (Energy+) is used to determine
the inputs (for example the insulation value) of an ANN model, which makes it a grey box
model. Besides combinations of black and white box models, there are models categorized as

grey box models.

An example of a method of a grey box model is the use of the concept of (multivariate) linear
regression where independent variables are chosen based on the energy thermal balance
principles. This is a statistical method used to model the relationship between a dependent
variable (for example, the heating and cooling demand) and one or more independent variables
by fitting a linear equation to the observed data. This linear equation has the following

mathematical form (Chatzithomas et al., 2015).

M O d o E oo (12
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where is the dependent variable (for example the heating demand), @, & and @& are the
dependent values, ® fd and & are the coefficients of the variables, and®is a constant (so
when @is zero) (Chatzithomas et al., 2015). This method can be used in statistical software
such as MATLAB. In several research papers, the multivariate linear regression model is
categorised as a black box mode( Dr g o Ra e t, howdver, asth2 patatéters are based
on the thermal energy balance (with among others building characteristics), this model

method is categorized as a greybox model.

Another grey box moGeaedadist anhcee RwosC Bsatcaingtice &noad 3 e

2010Lhm.the case of the LEA model, the RC model [
with as data i nput phys(iJcuala dbou ilLl-.doiéidygi s2hialrtheclt ea p pst
is abgremodel when some parameters are known and
are empiricallDygo®RtaeemTmiésd , m2d&I0)i s built with t
heat fluxes through a ther mal net wor k (bd®ed on

a ther mal net work is shown, where the heat fl ow
circuit). The heat fl ux i s influenced by the

temper atur e nddehse tlenmpFe rgautrdef(et ennopdeersa taurree; of t he
YEtemperature of YHe eenpeehopelr anhdambient (out c
gains from%t aedhelheesol¥gr mTaei aceaonfl ows through

so through the temperature nodes, aYf ebdetwveermi hae
nodes and the odheat theamnbd@esladuare & Ma d sTere, 20
driving force in this circuit (comparable to

temper di diference bet ween t he di fferent atemper a
estimated by the maximum | ikelihood. This give
characterist(iBaschare & iMdsan, 2011) .
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The advantage of the implementation of a grey box model in MPC over the other model
approaches is that the equation used in these models van be easily adapted to other similar
buildings, this results in that only a few models can be used to represent a maprity of the
building ( Dr g 0o Ra e t. Beaides that teSe2nddels can be easily adapted to the needs of
MPCsolver( Dr goRa et al ., 2020)

1. Ensuring continuity: the equations do not have abrupt changes)

2. Linearity: equations are simple and fast to solve

3. Differentiability: differentiability ensures that the equations can be differentiated,

which is required for calculating gradients and performing optimization in MPC.

2.2.5 Choice of model

Figasemmari zes the i mplementation of white, grey
on the descriptions of each model approach, the
(DrgoRa et al., 2020)

The specbdX cmgdely sebeuatsgda froul ttihviasr i ate IAi near

RC models can be effective for descriDrgoRphesi

al ., .2H>DWmewletri vari at e I(iMLdRgord erle gorfefsesrisonsi gni fi ca
in terms of simplicity, compdbohtub th(nkaokrsod fifjiac ieetn ce
2013)These areatessesstuiidlabt @ beor use in MPC applic
reliable optimization of control actions is cCcruf
goa(lsr goRa et al ., 2020)
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Suitable for

Features: Accuracy  Transferability small data sets

Smoothness  Reliability

Paradigms: Black-box Gray-box White-box

Strong association
=== True under special circumstances
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3 Resaer cnrhet hodol ogy

3.1 Research gap

Korolija etsed .sgwvOrlalBl) | inear regression model s
cooling and auxiliary ener gy Cragcdiirmeamedt sal bt €HV
to predict the monthly -fhemitliyngr eleimberrdt ifaolr sseicntgc
climate. The input of the regression model wer
envel ooppd U@, the window to flooonatramat randot hehe
The data input of the multivy&rataltéenhi weé¢enmalthgré®:
buil ding gl obal heat | oss coefficient, the sout!l
the indoor heati ngaisrett egprod enrtataunnrde.t he s ol

No study has been conducted to use amultivariate linear regression model with the indoor
surface temperature as a data input, exceptthe research ofJurado Lépez (2017). Heat is stored
within the thermal mass and released when the indoor temperature is lower than the
temperature of the thermal mass. The indoor surface temperature has a damping effect on the
heat transfers within the building. By including the indoor surf ace temperature as one of the
data inputs of a linear regression model, the amount of variables could be reduced. Jurado
Lopez (2017) has developed a multivariate linear model with only inputs from the outdoor
temperature and the indoor temperature. The heating demand is predicted during the opening
hours of three TU Delft buildings. However, there was no actual data available, a physial-
based model was used to simulate the data inputs. The research gap is that this model needs
to be validated with actual data, and when needed to improve this model and when possible to
predict the heating demand for 7 hours. This prediction time is set by the Brains4Building
project, with taking in considering the horizon of the other parts of MPC, for example the
electricity market and the power plants.

This research is building further on the model developed by Jurado Lépez (2017). In this
chapter the developed multivariate linear model by Jurado Lépez (2017)to predict the heating

and cooling demand is described.

3.2. Multivariate linear regression model method

The key objective of building a mathematical model with the linear regression model is to
combine variables, to define a correlation to predict the heating or cooling demand of a

building.
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Equation 10 shows the analytical form of a multivariate linear regression model to model the
heating or cooling demand. The dependent variable (in this case the heating or cooling
demand) is predicted with the use of independent variables and coefficients. Examples d used
independent variables are weather conditions and measured temperatures. These independent
variables can be measured, which makes this model relatively simple to use. In the case there
are multiple independent variables, a multivariate reg ression model is developed. The building
and system characteristics are captured in the coefficients, which are obtained from training
the model with historical data. As explained in Chapter 2.2.2. the building and system
characteristics are not always known, for example, in a white box modelling method, however,
with this type of model, a grey box modelling method, these building and system characteristics
do not need to be exactly known.

06 8 B & 00 (13)

=

0: the dependent variable, the (hourly) heating or cooling demand

1 0O : the constant, the expected value of the dependent value when all the independent
variables are set to zero This constant is in most case positive (when the dependent
variable is positive), however, it can be negative when the model isinaccurate, which
results in a compensating constant.

1 0 : the coefficient corresponding to the impact of the independent variable on the

dependent variable

1 &: the independent variable, with M parameters

The independent variables change over the used time step, therefore it is needed to express
this formula in a matrix form (shown in Formula 11J). This has also the advantage of making it
more efficient to use this approach in the software MATLAB.

o

0 P i E @ 8

€ & & E €& & (14

0 o Op E & 6
0 0 02§00 p 8 0 20O j

€ 6 60é& 8 06 068 8 (15)
0 06 020 p 8 06 20 §

1 o time step, for example, hour 1 until hour 8760 for a whole year, then N = 8760

M O : constant

Formula 14 is expressed bya system of equations in Formula 15. Per time step the heating or

cooling demand is calculated with this formula, where the independent variables are changing
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per time step, which results in a different heating or cooling demand per time step. The
dependent and independent variables are known, and with this data, the model is trained to
determine the best-fitted coefficients (what corresponds to the relation between the dependent

and independent variables) and the constant.

With this approach, the most significant parameters are chosen to determine the heating or
cooling demand with the highest accuracy possible. This accuracy is determined by the pre
selection of the parameters, to be candidate to use in the model.The selection of parameters
will be based on the thermal energy balance (described in Chapter 2.2.1). With these
parameters, all different possible linear equations are tested basedby the stepwiselm function
in MATLAB . The accuracy and the selection of the paramegrs are established with a search
procedure and statistical criteria described in Chapter 3.4. With this MATLAB function it is
possible to useé | i roeGirndt e r @ cthe stepwiseli code. The first option includes only
the independent variables as a single data input, for example, the outdoor temperature
(%| o <«M)..Tpe second option, gives the possibility to use acombination of two independent
variables, which are correlated to the heating or cooling demand, for example the outdoor
temperature (. o <m) apd the indoor temperature (4. m. . ) iThgre are two options of
combing these two independent variables, it could be multiplied by each other or divided by
each other, the function determines which option has the most influence on the heating or

cooling demand.

3.3 Data input model and formulas

In Chapter 2.2.1the thermal energy balance is described. As the multivariate linear regression
model is categorized as a grey box model, the independent variables are selected on this
thermal energy balance. Equation 1derived from the thermal energy balanceis rewritten to a
multivariate linear regression equation, shown in Equation 16.

0 w 0 0 Y Y o0 Y Y o0 Y
"Y 6 @ 2"Y "Y 6 0 6 0

6 Y Y (16)

In Table 1an overview is given of the physical significanceof the coefficients. The coefficients
are calculated by the multivariate linear regression model, therefore for the associate variables
in Table 1do not need to be included in the model.
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Tablghysical signifiécance of Equation 1

Coefficient = Physical significance

“ 6x YD
Cz 6xY B
Cs 6x0 P
Ca 6x a a <))
GCs 6 x QQQO &DVE A QMO VE ¢
£ WM aBBG e Q
Cs 6 x QQQO M o QIEEHH ' HMi A BRI O
C 6x | D

The variables that could be included in the model to follow the thermal energy balance, based

on Equation 16 are:

: outdoor temperature

: indoor air temperature

Y

Y

Y  :floor temperature
Y : temperature of ventilation air entering the room
W

: wind speed

0  :solar heat gains

([et)]

. internal heat gains

=A =4 =4 =4 4 -4 -4 =4

Y . indoor surface temperature

The multivariate linear regression model will calculate the coefficients of each variable and will
determine if a variable needs to be included based on the statistical validation and search
procedures as described in Chapter3.4. In this research, the choice is madeto exclude4||n 0 = =
as an independent variable, to avoid double counting as this variable is used to calculate the
heating and cooling supply of the ventilation (see Chapter5.5). Jurado Lopez (2017) developed

two models based on these principles.
Model 1 : dynamic model excluding the indoor surface temperature

The first model of (Jurado Lopez, 2017)was built with the independent variables of measurable
temperatures and variables, however, in this model the indoor surface temperatures are
excluded, because these temperatures are often not measuredThe general equation of this

model is Equation 17 within Table 2 the physical significance.
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Coefficient = Physical significance
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Within this model , the indoor surface temperatures are replaced by making the model
dynamic, by including the internal heat gains of 1 hour before (Ciint1a) and the solar heat gains
by 3 hours (G solarza)-

The accuracy of the model's predictions for the dependent variable varied from 73.5% to 90.7%
in the case studiesof Jurado L6pez (2017)

Model 2: static model including the indoor surface temperatures

In the second model of (Jurado Lépez, 2017), the indoor surface temperature is included along
with the independent variable outdoor temperature, resulting in an impressive R» value range
of 96% to 99% With excluding the indoor surface temperatures it was possible to exclude the
other variables; 'Y Y ho hO (o)) . This could be done because the
influences of these variables on the heating or cooling demandare captured by the thermal
mass of the building. The general equation of the second model is:
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0 0w WEéEEi oW Y 6 6 Y o (18)
Tab3:édetailed overview of the physical signific8@8nce coeffici

Coefficient Physical significance

Ca 6x Y D 0 5P 0 TP voa

G 0x | 20

Both models are developed by simulated data (by the white box model: LEA). Within this
research, the models will be tested with actual data and, when necessary, improved.The used
function of modelling and predicting the heating and cooling demand is stepwiselm
Mathworks (n.d.) with the discussed in the next section statistical validation and search
procedure.

3.4 Statistical validation and search procedure

To build a multivariate linear regression model with dependent variables and independent
variables, a statistical validation and search procedure is used, to select the significant

variables, wherefore an hypothesis is described in Chapter6.2.
The datafor the opening hours is split up into two parts:

1. Training data set : the first part (80% of the data set) including the heating or cooling
demand is used to train the model, whereby the modelled heating or cooling demand
is compared to the actual heating and demand based on the described statistical
concepts in this chapter.

2. Test data set : The other 20% of the data set is used with the developedmodel to
predict the heating or cooling demand. The accuracy of theprediction is determined by
the comparison between the heating or cooling demand of thedataset and the predicted
heating or cooling demand.

The model is created using the MATLAB statistical toolbox's stepwise regression function. This
function helps to develop a regression model for the dependent variable - in this case, either
the heating or cooling demand - based on different independent variables. By testing various
independent variables, the function determines the most effective combination of variables to
accurately predict and model the thermal power. The statistical validation and search

procedure consists of three major analysis conceyts:

1. Residuals of the data set
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Residuals refer to the discrepancy between the predicted or modelled dataset and the actual
observed data. The ultimate objective of utilizing a model is to ensure that the predictions are
as accurate as possible. Therefore, the mean of the residuals musbe (almost) zero for each
value of X, the variance is approximately constant for all X values, and the distribution

conforms to a normal distribution.

2. I ndividual significant | evel of the variabl ec
The significance of variable coefficients is assessed using fvalues and tstatistics to test
hypotheses and determine the significance of independent variables to determine which

variables need to be included in the linear regression model(Chatzithomas et al., 2015).

- The p-value measures the probability that the observed data would occur under the
null hypothesis, indicating the statistical significance of the results. When the p -value
is less than 0.05, a significant level for rejecting the null hypothesis is indicated. A p-
value below 0.05 is indicative of statistical significance and allows for the rejection of
the null hypothesis. This means that there is a less than 5% chance that the observed
results occurred purely by chance (Chatzithomas et al., 2015). The parameters with a
p-value of less than 0.05 will be included in the model while parameters with a p-value
greater than 0.1 will be removed. These thresholds are based on the stepwise regression

function.

Despite the standard exclusion of the independent variables with a p-value > 0.05, the
results showed that independent variables with a p-value <0.05 were included,
therefore an for-loop is added, to adjust the model by extracting the insignificant
independent variables. In some cases, the constant has g-value above 0.05, the

constant is not checkedwith this for-loop.

- Thet-statistics provides information on the significance of a variable's contribution
to the model. A higher t-statistic value indicates a greater contribution to the fit of the
curve. This value is calculated by dividing the estimated coefficient of a variable in a
regression model by the standard error of that coefficient (Chatzithomas et al., 2015).
The t-statistics value can be negative or positive, what indicates anegative or positive
relation between the independent and dependent variable.
With each introduction of an independent variable in the model, the p -values and the t
statistics will be calculated. The variables with a p-value between the range will be included in

the model and their priority will be determined based on their t -statistics.

3. Significance of the model
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Once the independent variables have been chosen, it is crucial to evaluate the model's
significance. There is a risk of overfitting the model if too many independent variables are
selected, which can lead to poor predictive performance. The model may becone too sensitive
to minor changes in the training dataset, resulting in overreacting to these changes. To avoid
this, another concept in statistics is used: the coefficient of determination (R 2), the adjusted

coefficient of determination (R 2 adjusted), and the root mean square error (RMSE).

The coefficient of determination ( R2) is a statistical measure that determines the

accuracy of a model to predict the dependent variable. The value of R lies between 0

and 1, where 0 signifies that the linear regression model cannot predict the dependent

variable and 1 indicates that the model can accurately predict the dependent variable.

Values between 0 and 1 indicate that the model can predict the incdependent variable to

some extent. In most cases the R value is positive, in some extraordinary cases, this

value can be negative, when the modeperforms very poorly. The goal is to achieve the

highest R? possible, but this could result in overfitting ( Ever i tt & Skiobondal ,
avoid this, the adjusted Rz and RMSE are used.

- The adjusted coefficient of determination ( R2 adjusted ) is a measure of how well the
data points fit on a curve or line, which takes into account the number of terms used in
the model. The R? adjusted value will increase when significant parameters are added
to the model but will decrease when less significant or non-significant parameters are
added( Everitt & SKAsotinedRaadjiste®val@elds)normally positive, but
can be in the case of a very inaccurate modelnegative, what can be caused by

insignificant variables, what results in adding noise instead of information.

- The Root Mean Square Error (RMSE ) indicates the standard deviation of the actual
data points from the regression line. A lower RMSE indicates a relatively good
prediction of the dependent value ( Ever i tt & S kAnatherdoptibn,is ti0 2 0)
Mean Absolute Error (M AE). This is a measure of prediction accuracy that calculates
the average absolute difference between the predicted and actualalues, giving equal
weightto allerrors ( Ever i tt & S KkTheoadvdraabe of RMBE200er MAE is
the sensitivity to outliers. This means that larger errors have a disproportionately large
impact on the RMSE, which is useful for this application where accuracy for each time
stepiscritical ( Everi tt & Skrondal, 2020)

3.5 Data analysis with Pearson -correlation coefficients

To understand the correlation between the choseil
bal ance (as desZrRi.dednidn AQPlpeamtdet 9ApNndxt he Bgabt

41



cooling demandl9 yc arnr elqautavtidldarche ,r | xreeGheanpeed i n
The values within these matrixes areocaled alt atoad
coefficient princibP%e, shown in Equation
. EBww Bw Bw
i P W
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The coefficients could be positive or negative,

positive relation [> 0, max 1], the heating or
i ncrease, for the negaliveai sedragda dhrewhidnrx tOhe maxl
par ameter increases, t he heating or cool ing d

categorized wit hd4t heef trearn gtetseZioaua tEecpdaréi.e s( 210n0 3 ) .

Tabd4e categorisation of the PeaZeswnetoalel @20@8) values, bas

Pearson correlatirdnvad Strenc¢cDirect
> 0.5 StroncPositi
0.3 to 0.5 Moder ePosi ti
0O to .3 We a k Positi
0 None None

0O 1t0. 3 We a k Negat.i
T0. 371 Q.05 Moder eNegat.
<710.5 Stron¢Negat.

3.6 Calculation of the delay (=)

Wit hin t he JuadslLépez (20h7), o ft hed etl{ayef t he i nternal heat

the solar heat gwitsthearusedeodehmioied he nor mal i se
vari abl edependdaemte vari abl e: heating or cooling ¢
the data set,obhbhppe meisketarichh hard to conclude f
the time delay between the cooling demand the so
is, as the patterns are not following each other
Therefore the choice iIis made t-oordredleatmimre ftuhrect
MATLAB. This f urbcatsieadn oma lt-chelr aPedas tsioomin coef ficient
del ay the correlation between the independent v

stronbDleernteby t heponsasxtibrhuem del ay i ¢ 144t t iowielh edpasy
ti mesteps ofl nl@ omitmuatsds )t o the scope of this rese
del ay is calcul ated withitt ethltiad adeptendfenal varhe
of before the opening Four $harstatsetmbdeudadike
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opening hours is wused. I n tthree dadsasedaf of heal dyndra
whereby the condition is set t hat onl dutihmg hea
opening hours, whereby it is possible use the va
bef orepariengTheuirsdependent variables with a del
the current val ue, so at mo ment t , Tisnelcto nwda swirntadt t
possible to use the valbecatbssowedenh i nlyed e mewaovapo ie
the practical wuse

3.7 Dealing with NaN and interpolation

Within the gathered data, there are some points
be diaubt in the met.erl f otrhea whholrd @aedd oidt i s in
wi || be sAnotpheaedr option is to chandesNaNted pich

of thi,s tvheelried ore the choice is Taedretar deiepde er
variables with another t1 nasitretpegr pgdlesteimd adiatl hp oti h
function i.n TMAeT LIABd erpieanbdleenst whaer ef ore thi s meth
explained 55 n Chapter
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4. Description and analysis case study

The building and operational characteristics of the case study are described to gain knowledge
to analyse the data set and to determine the available parameters of the predicting model,
whereby the following sub-question will be answered:

What are the main building and operating characteristics and how is the building heated

and cooled?

4.1 Overview building

In 2009 the location of the Haagse Hogeschool, Academy for Engineering (around 1200
students) was built on the TU Delft campus (shown in figure 12). The building was the first
educational building with an energy label of A++ (Bouw Wereld, n.d.). The building
automation system within the building can be controlled on a demand-driven basis. This
demand is primarily determined at room level by the presence of users and their wishes for the
indoor climate. The building is designed to facilitate study material for student to research,
which makes this building a suitable case study. Plans are made to install wind turbines and
make use of a fuel cell when these technologies are further developed Sy b van Breda &
n . d There are four building layers, including a basement used for the installations and as
bicycle storage( Sy b v an Br e.dCars ¢an park on the roaf, where also solar panels
and collectors, and an asphalt collector are installed. These solar panels are used as study
material, for research, the solar collectors are used for hot tap water. The inside walls (from
now called system walls) can be replaced, which makes the building flexible.

Figure 10: Drawing of Haagse Hogeschool in Delft (Syb van Breda & Co, n.d.)
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4.2 Building characteristics
The building characteristics are based on a non-public report by Peutz.

An overview of the building characteristics is given in Table 5. The building has a relatively
high envelope/floor ratio (= 0.76), which in general indicates a higher heat gain in the summer
and heat loss during winter. The building has a relatively high window/fagade area ratio, which
indicates a high influence of solar heat gains on the thermal demand (the highest at the North-
West facade and the lowest at the North-East fagcade indicated by the window/fagade ratio of
0.60 and 0.25, respectively). These effects are reduced by the relatively high insulation value
of the facade (Rc = 4 n¥K/W and U = 0.24 W/m 2K) and the low g-value ( = 0.25) of the
windows. This indicates that there will be a small correlation between the therm al demand and
the outdoor parameters. The floors with floor heating and cooling and concrete construction
columns are expected to have a relatively higher thermal mass ( = 400 kg/m?) than the inner
system walls (thermal mass unknown). However, the time-delaying and dampening effect on
the air temperature described in Chapter 2.2.1 is expected to be decreased by the high
envelope/floor area ratio.

Table 5: Overview of the building characteristics of the case study

Parameter Value Unit
Floor area 12150 m?2

Educational function 4140 m?2

Meeting function 4987 m?2

Office function 1993 m?2

Common function 985 m?2
Ratio envelop area (walls + windows + roof)/floor area* 0.76 -
Insulation value (Rc) 4 m2K/W
U-value facade 0.24 W/m 2K
U-value windows 1.7 W/m 2K
g-value windows 0.25 -
U-value doors 3.2 W/m 2K
Specific thermal mass of building (floor) 400 kg/m 2
Ratio window area/facade area

South-East 0.29 -

North -East 0.25 -

North -West 0.60 -

South-West 0.58 -

Roof 0.12 -

* excluding the basement
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4.3 Thermal systems

Information provided about the thermal systems is based on a non-public report by Peutz
and the technical descriptionofthe 6 nar egel i ngend of DWA.

The building is equipped with heat and col d

el ectrical heat pump (ground water source),
boilers (to supply heat during exdetanel ¢d hvig
the building including the installation can
an aquifer thermal storage, where warm and c
I n the summer |, the building is cooled with
injected back into the warm source. During t
sour ce, and with a heat pumpempbkrat heatt osh
buil di ng.dolvwre watodredwi | I be injected into the
obligatory to keep the heat and cold storag

nstalled on the rtohod .piWaeleirn efsl otwhsr otuhgrho utghhe

Additionally, there is also an air heat exch
hel ps in balancing the ther mal energy storag
As stated earlier, on the room | evel there |
building |l evel, this is reversed. This can b
heated by the collector to prevent frost on

Connected tothe aquifer thermal storage is a heat pump. This heat pump provides warm water
to the floor heating system and the air handling unit . In the summer, the heat pump works as
a chiller and delivers cold water to cool the rooms with the floor system, climate ceiling,
additional active ceiling panels and air handling unit . This heat pump can deliver heat and cold
at the same time. Cold can also be directly delivered by the coldstorage of the aquifer thermal

storage when the cold load is not too high, the heat pump is not used as a chiller

The floor is heated or cooled by a floor heating and cooling system, per floor there are two
groups; North and South. The heating and cooling pipes go to the floor groups from the heat
pump and boiler. Per group heating or cooling is possible, but it is not possible to heat or cool
at the same time with this installation. Each room has its valves, which can be opened or closed
to receive heat and cold (for the ventilation system this is shown in Appendix D), which is

determined by the occupancy and temperature sensors in the room. The floor system supplies

the base heat or cold, however, the disadvantage of this system is the time delay due to the
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thermal mass of the system. Additional heat can be supplied by the climate system where
mechanical ventilation is installed. This system is also used for additional cold, besides that, in
some rooms additional active ceiling panels (shown in Figure 13). These heating and cooling
systems are summarized in Table6.

Besides additional heating and cooling, the mechanical ventilation system is used to secure
good air quality. This is an exhaust & supply system with heat recovery (exhaust air ducts
shown in Figure 14). The amount of fresh air supplied by this system is determined by
occupancy and temperature sensors in the rooms. Outside air is cleaned and preheated byhe
recovery (in the air handling unit (AH U), and there is additional heating and cooling through
two coils connected to the heat pump/boiler or chiller . Humidity and temperature are
regulated by extracting humidity from the extracted air (only during summer by deep cooling)
and by recycling the heat.

In addition to the heat pump, HR boilers are installed. During high-demand peaks of heat,
these boilers can deliver additional heat besides the heat mmp. On the roof, 21 n? of solar
collectors are installed to deliver together with the HR boiler, heat for hot tap water.

Figure 11 Active ceiling panels used for additional cooling in several rooms (own picture)
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Figure 12 Exhaust air ducts of the exhaust & supply system to supply fresh air and for additional heating or

cooling (own picture)

Table 6: Overview of installations for heating and cooling in the Haagse Hogeschool in Delft

Demand Supplied by

Heating Floor heating or cooling

Air heating and cooling by mechanical ventilation
Cooling Floor heating or cooling

Air heating and cooling by mechanical ventilation
Additional active ceiling panels

4.4 Operating characteristics

Information provided about the operating characteristics is based on a non-public technical
description of the énaregelingend of DWA.

At room level, the desired air temperature is set, in general for offices at 21,5 °C and lecture
rooms at 21 °C. In each room, there is a thermostat, which can be used to change the
temperature set point. However, this option is not used now, the temperatu re setpoints are
changed by the building managers, where occupants of the room can give their preference. In
practice, each room has a different temperature set point. The room is cooled or heated when
the temperature set point is higher or lower than th e air temperature of the room. As the
heating and cooling demand is connected to the air temperature (influenced by the occupancy,
solar gains, infiltrations and the indoor surface temperature), a correlation between the air
temperature and the thermal demand is expected.
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To optimise the energy costs and to shave the peaks for heating and cooling, the installations
are released or blocked according to time switches( 6 t i j d s ¢ h a Wwhich d&d corfelatedn 6 ) ,
to the opening hours:

1 Opening hours: Monday i Thursday 8 - 23 and Friday 81 19
9 Closing hours: Monday i Thursday 23 - 8, Friday 19 - 8 and weekend

Due to the thermal inertia of the floor heating and cooling, the time switch of this installation
is during the early morning. When this installation is switched off, the ventilation and panels
can switched on, according to the time switches. The ventilation is switched on when there is
a release from the time switch, occupancy is measured for a minimum of 10 minutes or a high
CO: content is measured. The ceiling panels are switched off when the windows are closed.

During closing hours there is no heating or cooling, except when there is occupancy measured.

4.5 Selection of rooms

The Haagse Hogeschool Building in Delft is designed to be used as study material. The whole
building is equipped with sensors. In the so-called test zone, there are more sensors installed.
In Figure 15, a map of the test zone can be found. Rooms within this test zone are selected to
use as a case study. Within this test zone, two rooms are selected based on the different usages
of the room, orientatio n, areaand thermal mass (as shown in Table7). The rooms are supplied
with heat and cold by the same type of installations; floor heating and cooling, ventilation and
panels. The two rooms are opposite to each other on the first floor of the building, with a

corridor in between, as shown in Figure 15.

The first room is an office for 6 teachers, at the south fagade, with a floor area of 50.82 n2. The
office has a glass wall to the corridor and four windows in the south fagade. There are six desks
in the room. The other room is a classroom for 46 persons, at the courtyard, facing north, with
a floor area of 78.11 m. The classroom has two glass doors to the corridor because the system
walls are replaced, to get a bigger classroom. The four windows are facing the courtyardThe
thermal mass of the classroom is higher than the office, as the office hasa glass wall instead of
a system wall. It is expected that the classroom is lesexposedto weather conditions than the
office, as the classroom is adjacent to the courtyard.These rooms are within the test zonewith
more sensorsthan the rest of the building, however, the indoor surface temperature is not
measured by the existing sensors. Therefore, the indoor surface temperatureis measured with
self-placed sensors. In Figure 16 a simplified visualization of the two rooms is shown, with the
placed indoor surface temperature sensors. In this Figure, only the used sensors for data

collection are shown (further explanation in Chapter 5.7).
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View from courtyard faced north
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