

Knowledge-based vs. Data-driven? Fault Detection and Diagnosis in Buildings

Dr. Chujie Lu Postdoctoral Researcher Dept. of AE+T, TU Delft c.j.lu@tudelft.nl

TUDelft Department of Architectural Engineering +Technology BKBouwkunde

Overview

- Background: Fault Detection and Diagnosis (FDD) in Buildings
- Data-driven FDD: Critical Case Analysis
- Diagnostic Bayesian Network (DBN)
- Ongoing research in TUD

Background: energy use in buildings

- Buildings are the single largest energy consumer in Europe.

around 40%over 1/3+/- 80%of energy consumed in
the EU is used in
buildingsof the EU's energy-
related GHG emissions
come from buildingsof energy used in EU
homes is for heating,
cooling and hot water

 The revised Energy Performance of Buildings Directive: achieve emission reductions of at least 60% in the building sector by 2030 compared to 2015 and to reach climate neutrality by 2050.

> Key task: minimizing the energy waste in buildings!

UDelft Bouwkunde

• Why FDD is needed?

A survey on energy and cost savings since the installation of the Energy Information Systems (EIS) and FDD. (LBNL, US)

maintaining! Energy saving! Cost saving!

Bouwkunde

TUDelft

Kramer et al., Energy Efficiency (2020) 4

• What is Fault?

- Condition-based: Improper or undesired *physical conditions* (Stuck valves/Fouled coils/Broken actuators/...)
- Behavior-based: Improper or undesired *behaviors* during the operation (Reduced water flow/Reduced supply temp./...)
- Outcome-based: Quantifiable outcome or performance metrics deviate the expected outcome (Increased energy use/Reduced COP/Uncomfortable indoor temp./...)

If people feel alright and there is no extra energy waste, would it be a fault?

Frank et al., Energy Build (2019) 5

- What is Fault Detection and Diagnosis?
 - Fault Detection: check whether a fault has occurred
 - Fault Diagnosis/Identification/Isolation: identify the type of a fault and its location
 - Some FDD methods (Data-driven) can deal with two steps simultaneously

TUDelft Bouwkunde

Reddy et al., ASHRAE Trans (2007) 6

• How to diagnose Faults?

- > Knowledge-based: Diagnosis rely on expert experience and domain knowledge
- Data-driven: Fault Pattern "Knowledge" is obtained from data.

Zhao et al., Renew Sust Energ Rev. (2019) 7

- FDD in Academia: A Rising Trend! (With the boom in AI)
 - In 2023, more than 50 publications
 - > Over 70% are data-driven!

Zhao et al., Renew Sust Energ Rev. (2019) 8

FDD in Industry: Reluctant?

- Unfamiliar: FDD seems to be an academic definition, customers rarely knew the benefits of FDD (Aalburg, DK)
- Expensive: FDD base cost was five times higher than the EIS base cost, and the FDD ongoing costs were double that of EIS. (LBNL, US)
- Lack of a viable business model for FDD

>

- FDD Methods in Industry: Still knowledge-based !
 - Expert systems for FDD in HVAC systems are still predominantly used (Aalburg, DK; LBNL, US; CRC, AU)

Disjunction between academia and industry!

Delft Bouwkunde

Andersen et al., Energy Build (2024) Kramer et al., Energy Efficiency (2020) 9 Wall et al., CRC for lower carbon living (2018)

What is a good data-driven model?

TUDelft Bouwkunde

15

~

1

1

~

~

1

 \checkmark

~

1

~

1

~

1

~

~

1

Yes

16

1

~

~

~ ~ ~ ~

~

1

1

~

~~~

1

Yes

17 18

1

1

1

1

~

1

1

1

1

1

~

1

1

1

1

Yes

7

~

1 ~

1 1

8

1

1

1 ~

1

1

 $\checkmark$ 1

~ 1

~ 1

1

1 ~

1

1

6

~

1

1

~

1

~

1 1 ~

9 | 10 | 11 |

~

~

~ ~

~ ~

1 1

~ ~

~  $\checkmark$ ~

~

~

~ 1

~

~

~  $\checkmark$ 

~ ~

~

~

1

12

1

1

~

 $\checkmark$ 

1

1 1

~

~

1

1

1

~

1

Yes

~

1 1

~ ~

~

~

~

1

~

~

1

13 | 14

1

~

~

### What is high-quality data for FDD?

- Data from sufficient sensors
  - Sensor survey on 18 AHUs in the Netherlands

#### Building Technical Standards ASHRAE (US): basic requirement for FDD



Bouwkunde

| Sensor                                   | <b>A</b>         | F  | 1            | 2 | 3            | 4            | 5 |   |
|------------------------------------------|------------------|----|--------------|---|--------------|--------------|---|---|
| Outdoor air temperature                  | $  \checkmark  $ | ł  | 1            |   |              |              | 1 | Ī |
| Outdoor air relative humidity            |                  | ł. |              |   |              |              |   |   |
| Preheated air temperature                | $\checkmark$     | Ł  |              |   | $\checkmark$ |              |   |   |
| Preheated air relative humidity          |                  | Ł  |              |   |              |              |   |   |
| Supply air temperature                   | $\checkmark$     | Ł  | $\checkmark$ | 1 | $\checkmark$ | $\checkmark$ | 1 |   |
| Supply air relative humidity             |                  | Ł  |              |   | $\checkmark$ |              | 1 |   |
| Return air relative humidity             |                  | Y  |              |   | $\checkmark$ |              | ~ |   |
| Exhaust air temperature                  | 1                | Ł  |              |   |              | 1            | 1 |   |
| Exhaust air relative humidity            |                  | Ł  |              |   |              |              |   |   |
| Supply water temperature                 | $\checkmark$     | Y  |              |   |              |              |   |   |
| Return water temperature                 | $\checkmark$     | Ł  |              |   |              |              | 1 |   |
| Pressure difference at supply air filter |                  | Ł  | 1            | 1 | $\checkmark$ | ~            | 1 |   |
| Pressure difference at return air filter |                  | K  |              |   | $\checkmark$ | 1            | 1 |   |
| Pressure difference at supply air on fan |                  | Ł  |              |   | $\checkmark$ |              |   |   |
| Pressure difference at return air on fan |                  | Ł  |              |   |              |              |   |   |
| Supply air flow rate                     | $\checkmark$     | K  |              | 1 |              |              |   |   |
| Return air flow rate                     | $\checkmark$     | Ł  |              |   |              |              |   |   |
| Coil valve control signal                | $\checkmark$     | Ł  | 1            | 1 | ~            | ~            | 1 |   |
| Supply fan control signal                | 1                | Ł  | ~            | 1 | $\checkmark$ | $\checkmark$ | 1 |   |
| Return fan control signal                | $\checkmark$     | Ł  | 1            | 1 | $\checkmark$ | $\checkmark$ | 1 |   |
| Supply damper control signal             |                  | Ł  | 1            | 1 | $\checkmark$ | ~            | ~ |   |
| Return damper control signal             |                  | Ł  | 1            | 1 | $\checkmark$ | $\checkmark$ | 1 |   |
| Air quality sensor                       |                  | Ł  |              |   |              | ~            |   |   |
| Temperature sensor after coil            | $\checkmark$     | Ł  |              |   |              |              | ~ |   |
| Coil water flow                          |                  | Ł  |              |   |              |              |   |   |
| Fit ASHRAE recommendation                | -                |    |              |   |              |              |   | T |



- Data from sufficient sensors
- Data without missing values



Black spots or streaks are missing data values



Canaydin, Ada, et al., Applied Energy (2024) 13



- Data from sufficient sensors
- Data without missing values
- Data with faulty labels
  - Fault Experiments



| WINTER EXPERIMENTS                                  |                                                     |            |            |           |           |  |  |  |  |
|-----------------------------------------------------|-----------------------------------------------------|------------|------------|-----------|-----------|--|--|--|--|
| Fault LBK201                                        | Fault LBK 202                                       | Start Date | Start Time | Stop Date | Stop Time |  |  |  |  |
| Fan Stuck (30%)                                     | Fan Stuck (30%)                                     | 2024/3/23  | 08:21      | 2024/3/23 | 11:14     |  |  |  |  |
| Fan Stuck (70%)                                     | Fan Stuck (70%)                                     | 2024/3/23  | 11:14      | 2024/3/23 | 14:32     |  |  |  |  |
| Heat Recovery Wheel Stuck (0%)                      | Heat Recovery Wheel Stuck (0%)                      | 2024/3/23  | 14:32      | 2024/3/23 | 17:00     |  |  |  |  |
| Heat Recovery Wheel Stuck (30%)                     | Heat Recovery Wheel Stuck (30%)                     | 2024/3/23  | 17:00      | 2024/3/23 | 20:08     |  |  |  |  |
| Heat Recovery Wheel Stuck (70%)                     | Heat Recovery Wheel Stuck (70%)                     | 2024/3/24  | 08:02      | 2024/3/24 | 11:05     |  |  |  |  |
| Incorrect Supply Air Pressure Set Point (+50=235)   | Incorrect Supply Air Pressure Set Point (+50)       | 2024/3/24  | 11:05      | 2024/3/24 | 13:58     |  |  |  |  |
| Incorrect Supply Air Pressure Set Point (-50=135)   | Incorrect Supply Air Pressure Set Point (-50)       | 2024/3/24  | 13:58      | 2024/3/24 | 17:00     |  |  |  |  |
| Incorrect Supply Air Pressure Sensor Reading (=130) | Incorrect Supply Air Pressure Sensor Reading (=130) | 2024/3/24  | 17:00      | 2024/3/24 | 20:00     |  |  |  |  |



Bouwkunde



- Data from sufficient sensors
- Data without missing values
- Data with faulty labels
- Data with balanced labels
  - Fault Frequency

| 825<br>689 |
|------------|
| 689        |
|            |
| 505        |
| 489        |
| 473        |
| 452        |
| 428        |
| 315        |
| 315        |
| 251        |
| 234        |
| 215        |
| 204        |
| 137        |
| 120        |
| 107        |
| 107        |
| 107        |
| 107        |
| 89         |
| 84         |
| 53         |
|            |



Bouwkunde

15 Srinivasan Gopalan (2023)



- Data from sufficient sensors
- Data without missing values
- Data with faulty labels
- Data with balanced labels
- Data with generalized (real) distributions
  - Building energy data can exhibit diverse and complex distributions due to varying operational conditions, installations, environmental factors, and occupancy.
  - Fault experiments are expensive and time-consuming! But limited experiments cannot reflect faulty data distribution in real buildings.



### Data-driven FDD





Air handling Units (AHU) with heat recovery wheel (HRW)



#### Data-driven FDD

#### Air handling Units with heat recovery wheel

![](_page_17_Figure_2.jpeg)

Building 28, TUDelft

- Fault experiments during March 2024
- In total, 15 faults were conducted
- Each fault was conducted from 2 to 4 hours. The data interval is 5 minutes

TUDelft Bouwkunde

*B4B Webinar#15 Fault Experiments to Generate Data from Living Laboratory* (Srinivasan Gopalan, Karzan Mohammed, Jan. 2024)

Normal

Ν

BRAINS 4 Buildings

50

![](_page_18_Picture_0.jpeg)

#### Knowledge-assisted Feature Selection

![](_page_18_Figure_3.jpeg)

![](_page_19_Picture_1.jpeg)

BRAINS

![](_page_20_Picture_1.jpeg)

#### Data-driven models

![](_page_20_Figure_3.jpeg)

![](_page_21_Picture_0.jpeg)

Bayesian Optimization for hyperparameters

![](_page_21_Figure_3.jpeg)

![](_page_21_Picture_4.jpeg)

![](_page_22_Picture_1.jpeg)

#### • How accurate data-driven models can be?

| 2       | Accuracy (%) | Precision (%) | Recall (%) | F1-score (%) |
|---------|--------------|---------------|------------|--------------|
| SVM     | 97.5         | 97.82         | 97.5       | 97.51        |
| GBDT    | 95.63        | 96.02         | 95.63      | 95.54        |
| XGBoost | 97.5         | 97.71         | 97.5       | 97.48        |
| ANN     | 97.5         | 97.76         | 97.5       | 97.54        |
| CNN     | 93.75        | 95.31         | 93.75      | 93.82        |

#### > Quite accurate!

**TUDelft** Bouwkunde

|           | ANN CONTUSION MATRIX (%) |       |       |       |       |       |       |       |       |        |       |       |       |      |      |       |      |   |       |
|-----------|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|------|------|-------|------|---|-------|
|           | 0                        | 100.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  |   | - 100 |
|           |                          | 0.0   | 100.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  |   |       |
|           | - 5                      | 0.0   | 0.0   | 100.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  |   |       |
|           | m -                      | 0.0   | 0.0   | 0.0   | 100.0 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  |   | - 80  |
|           | 4 -                      | 0.0   | 0.0   | 0.0   | 0.0   | 100.0 | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  |   |       |
| S         | <u>ہ</u>                 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 100.0 | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  |   |       |
| ult       | - و                      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 100.0 | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  |   | - 60  |
| Fa        | -                        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 100.0 | 0.0    | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  |   |       |
| lal       | ∞ -                      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 90.9   | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 9.1   | 0.0  |   |       |
| <b>Ct</b> | ი -                      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 100.0 | 0.0   | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  | - | - 40  |
| ٩         | <u>р</u> .               | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 100.0 | 0.0   | 0.0  | 0.0  | 0.0   | 0.0  |   |       |
|           | <b>H</b> -               | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 100.0 | 0.0  | 0.0  | 0.0   | 0.0  |   |       |
|           | 11                       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 92.9 | 0.0  | 0.0   | 7.1  |   | - 20  |
|           | ញ-                       | 11.1  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0  | 88.9 | 0.0   | 0.0  |   |       |
|           | 14                       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 100.0 | 0.0  |   |       |
|           | 51 -                     | 0.0   | 14.3  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   | 0.0   | 0.0   | 0.0  | 0.0  | 0.0   | 85.7 |   |       |
|           |                          | ò     | i     | ź     | 3     | 4     | 5     | 6     | 7     | å<br>d | البرج | io    | 'n    | 12   | 13   | 14    | 15   |   | - 0   |
|           |                          |       |       |       |       |       | וט    | ayı   | 1056  | eu r   | aul   | LS    |       |      |      |       |      |   |       |

23

![](_page_23_Picture_1.jpeg)

Can data-driven models be trustworthy?

![](_page_23_Figure_3.jpeg)

- Holistic understanding of the ML model by measuring the global effects of the input features on the diagnosis.
- Transparent understanding of the diagnosis for a **specific sample**.

![](_page_23_Picture_6.jpeg)

![](_page_24_Picture_0.jpeg)

- Can data-driven models be trustworthy?
  - > Global interpretation:

![](_page_24_Figure_4.jpeg)

![](_page_24_Figure_5.jpeg)

![](_page_25_Picture_0.jpeg)

- Can data-driven models be trustworthy?
  - Local interpretation

![](_page_25_Figure_4.jpeg)

 $\sqrt{}$ 

![](_page_26_Picture_1.jpeg)

High-quality data:

- Data from sufficient sensors
- Data without missing values
- Data with faulty labels
- $\succ$  Data with balanced labels  $\sqrt{}$
- Data with generalized distributions ?
  ...

Outdoor temp. distributions provide significant diagnostic evidence. But it is not relevant !

#### **Reason: limited data collection experiments**

- "Fan Stuck" was collected from 9 to 11
- "Incorrect Supply Air Temp. Setpoint" was collected from 13 to 17

#### **TUDelft** Bouwkunde

![](_page_26_Figure_13.jpeg)

![](_page_26_Picture_14.jpeg)

![](_page_27_Picture_1.jpeg)

Can data-driven models be transferable? 

![](_page_27_Figure_3.jpeg)

Bouwkunde

| Туре      | Fault               | State | Samples | No.            |
|-----------|---------------------|-------|---------|----------------|
|           | Fan Stuck           | 30%   | 30      | F <sub>1</sub> |
|           | Heat Recovery Wheel | 0%    | 27      | $F_3$          |
| Component | Stuck               | 30%   | 34      | $F_4$          |
|           | Heating Coil Valve  | 1000/ | 26      | Б              |
|           | Stuck               | 100%  | 30      | L.8            |

![](_page_28_Picture_1.jpeg)

#### Can data-driven models be transferable?

|         | Accuracy (%) | Precision (%) | Recall (%) | F1-score (%) |
|---------|--------------|---------------|------------|--------------|
| SVM     | 0            | 0             | 0          | 0            |
| GBDT    | 4.17         | 25            | 4.17       | 7.14         |
| XGBoost | 20           | 25            | 20         | 22.22        |
| ANN     | 0.83         | 25            | 0.83       | 1.61         |
| CNN     | 0            | 0             | 0          | 0            |

#### > NO.

Data-driven models can not be transferred **directly** to other buildings

#### **T**UDelft

![](_page_28_Figure_7.jpeg)

![](_page_28_Figure_8.jpeg)

![](_page_29_Picture_0.jpeg)

- Summary: Don't be fooled by accuracy!
  - Data :
  - Collect more?

#### Data-driven Model :

- Unsupervised learning?
- Transferring learning?
- Active learning?
- Federated Learning?
- Integrated with engineering knowledge?

#### TUDelft Bouwkunde

### Diagnostic Bayesian Network (DBN)

![](_page_30_Picture_1.jpeg)

*DBN aligns well with HVAC design and implementation practices, which can be a more generalized applicable FDD solution in industry* 

- Robustness to Uncertainties
- Interpretability
- Scalability
- Flexibility

![](_page_30_Figure_7.jpeg)

Four symptoms and three faults (4S3F) approach

![](_page_30_Picture_9.jpeg)

B4B Webinar#2 Fault Detection and Diagnosis (Arie Taal, March 2022)

![](_page_31_Picture_0.jpeg)

#### Diagnostic Bayesian Network (DBN)

Generic modeling procedure

![](_page_31_Figure_3.jpeg)

Flexibility: DBN modeling can be knowledge-based or data-driven, or hybrid.

![](_page_31_Picture_5.jpeg)

![](_page_31_Figure_6.jpeg)

### **Ongoing research**

Bouwkunde

- DBN for case studies in the context of northern Europe
- DBN with occupant feedback

![](_page_32_Figure_3.jpeg)

![](_page_32_Picture_4.jpeg)

### Acknowledgements

![](_page_33_Picture_1.jpeg)

- Work Package 1: (TUD) Laure Itard, Arie Taal, Martín Mosteiro Romero, Ziao Wang, Lars van Koetsveld van Ankeren (TU/e) Rick Kramer, Srinivasan Gopalan, Karzan Mohammed
- Living Labs: (Kropman) Shalika Walker, John Verlaan, ... (CRE TUD) Danny Pronk, Serkan Simsir, ...

![](_page_33_Picture_4.jpeg)