

DATA-DRIVEN SMART BUILDINGS

FDD IN THE PULSE CORE PLATFORM

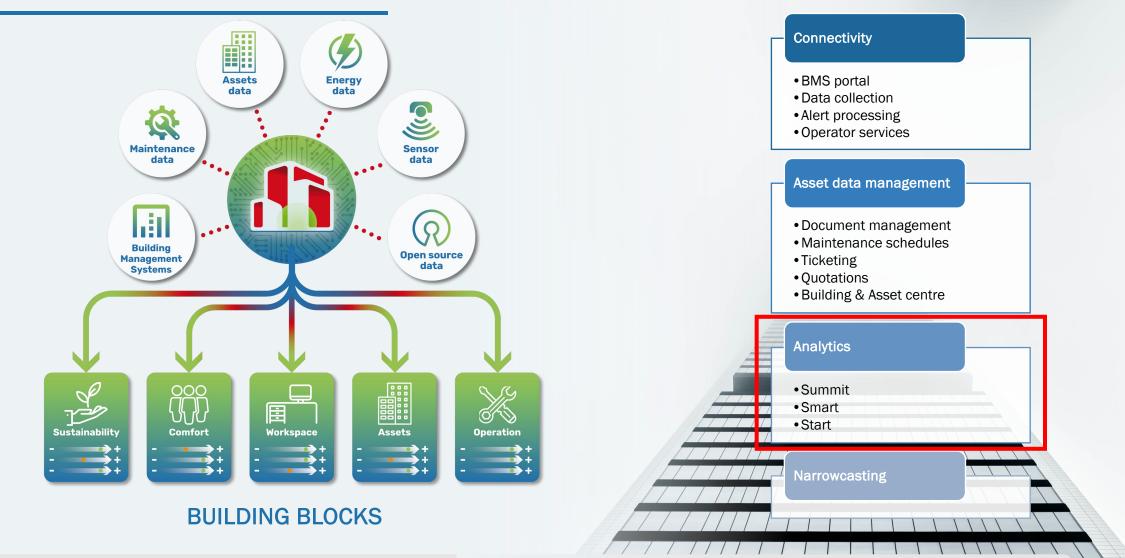
B4B/IEA ANNEX 81 ONLINE SYMPOSIUM 28-02-2024 COEN HOOGERVORST

PULSE CORE

Introduction

PULSE CORE

Introduction



SERVICES

PULSE CORE

Introduction

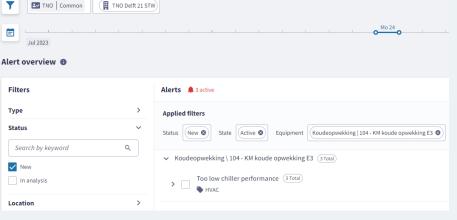
Why FDD in the PULSE Core platform

• Person with analytics skills and domain knowledge is needed to do root cause analysis

DESIRED SITUATION:

• Create an automated solution which will execute the root cause analysis so a diagnose can directly be shared with people in the operation

>> Fault Detection and Diagnosis



Alert details Too low chiller performance - Koudeopwekking 104 - KM koude opwekking E3 🌒

Research question

Main question:

Are diagnostic bayesion networks (DBN) a suitable methodology to extend our automated fault detection solution with diagnostics to replace (a part of) our manual analyses?

Requirements and preconditions:

- Low implementation time per project (requirement for positive business case).
- The methodology should be scalable and easy to apply to a wide variety of projects with specific characteristics.
- We do not have labelled datasets.
- For good adoption in operation reliability is key!

Research steps

1. Build automated data flow from sensor data to fault probabilities in our platform for an air handling unit (AHU).

2. Demonstrate the reliability and usability of the DBN methodology on AHU's

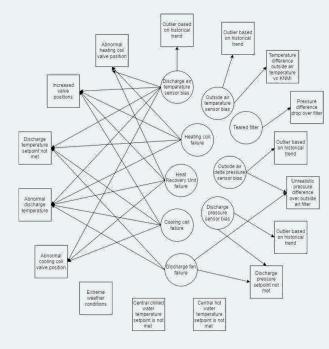
2a. Optional: testing applicability of small sub-component models trade-off between different model results.

3. Define a conclusion on applicability of DBN for FDD

4. Optional: create DBN's for other equipment types

From sensor data to fault probabilities

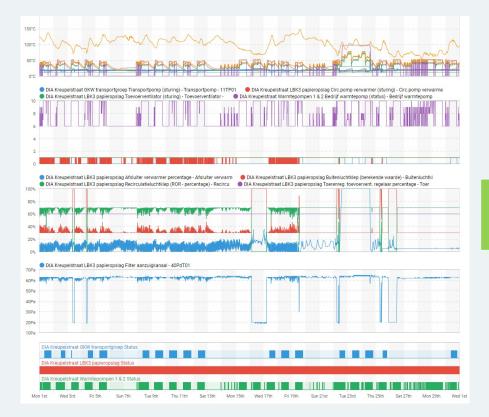
- A DBN for an AHU on main component level was defined (using Noisy-max).
- This was the first experience in estimating prior and conditional probabilities.



	Symptom state	Heating coil failure	Cooling coil failure	Heat Recovery Unit failure	Discharge fan failure	Discharge air temparature sensor bias	Outside air temparature sensor bias	Delta pressure sensor bias	Discharge pressure sensor bias
		Present	Present	Present	Present	Present	Present	Present	Present
Abnormal heating coil valve position during heat demand	Present			Facility and ha	hillstee hees				
Abnormal cooling coil valve position during cool demand	Absent			Fault propa	abilities bas	ea on symp	tom states		
increased valve positions	Present	100%							
Abnormal discharge temperature	Present	90%							
Discharge temperature not met	Present	80%							
Discharge pressure not met	Absent	70%							
Central hot water temperature is not met	Absent	60%							
Central chilled water temperature is not met	Absent	50%							
Extreme weather conditions	Absent	40%							
Outlier discharge temperature	Absent	30%							
Outlier outside temperature	Absent	20% 10%							
Outlier delta pressure filter	Absent	0%				_			
Outlier discharge pressure	Absent		failure Cooling coil fa	ailure Heat Recovery	Unit Discharge fan failu	ire Discharge air	Outside air	Delta pressure	Discharge pressure
Unrealistic delta pressure filter	Absent			failure		temparature senso	r temparature sensor	sensor bias	sensor bias
Big temperature difference between outside air temperature and KNMI	Absent					bias	bias		
FAULT PROBABILITIES		70%	3%	9%	0%	4%	0%	0%	0%

From sensor data to fault probabilities

- Logic for symptoms was created in Skyspark
- Linear regression models for anomaly detection instead of ML models (with not too bad performance)

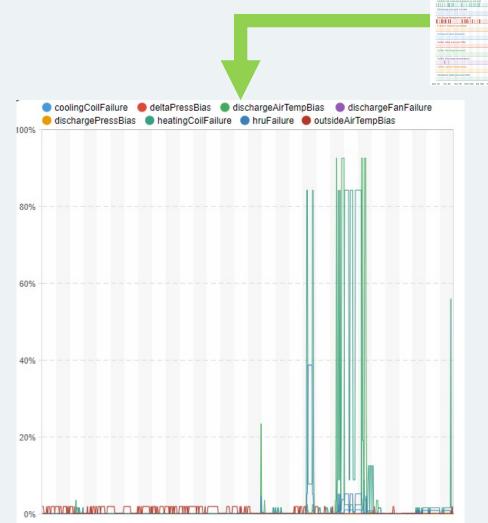


	scharge ter	mperati	ure								-				
Abnormal he	ating coil v	valve po	osition	l durin	g heat	dem	and								
Big tempera	ture differe	nce bei	ween	outsid	de air t	emp	erature	e and	KNN	11					
Central chill	ed water te	mperat	ure is	not m	et										
									_						
Central hot	vater temp	erature	is no	t met		Ш					п.				
Discharge p	essure no	t met							-						
Discharge p	coourc no	t mot													
Discharge te	mperature	not me	et					_							
Extreme we	ather condi	tions													
		_	_	_		_	_	_	_	_	_	_		_	_
Increased va	ilve positio	ns									-				
	nressure f	iltor		-	-	-							-		
Outlier delta	pressure i	inter													
Outlier delta		ure													
Outlier delta Outlier disch	arge press														
	arge press				_										
		erature													
Outlier disch	arge temp														
Outlier disch	arge temp		_					-							

Mon 1st Thu 4th Sun 7th Wed 10th Sat 13th Tue 16th Fri 19th Mon 22nd Thu 25th Sun 28th Wed 1st

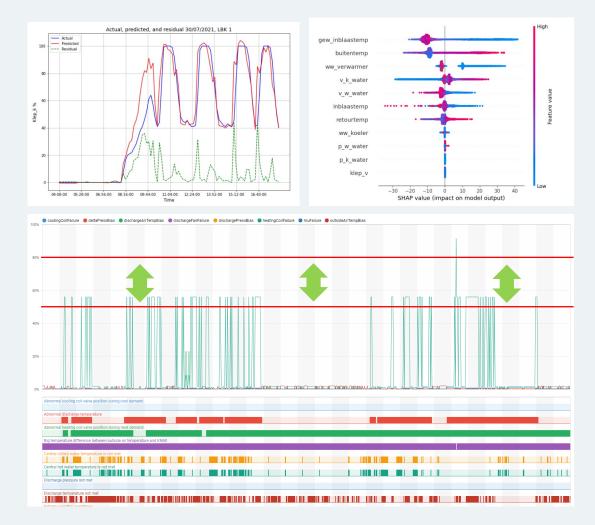
From sensor data to fault probabilities

- Created general logic to calculate fault probabilities based on symptom states.
 - simplified probability calculation (which approaches real methodology)
- Current work: apply this logic on multiple buildings to gain experience on scalability and identify issues:
 - How handle different configurations?
 - Is the (regression / ML) model approach reusable?
 - Is the DBN structure with probabilities universal applicable?



Reliability and scalability of the DBN

- Create an improved DBN:
 - Domain expert interviews in corporation with TU/e for improved DBN
 - Tune the DBN and symptom definitions based on first results in step 1
 - Replace regression models by ML models (if needed)
- Evaluate results of the DBN on multiple buildings with known failures:
 - Based on first threshold evaluate periods with detected faults by comparing them with failure database.
 - Define probability threshold for alerts

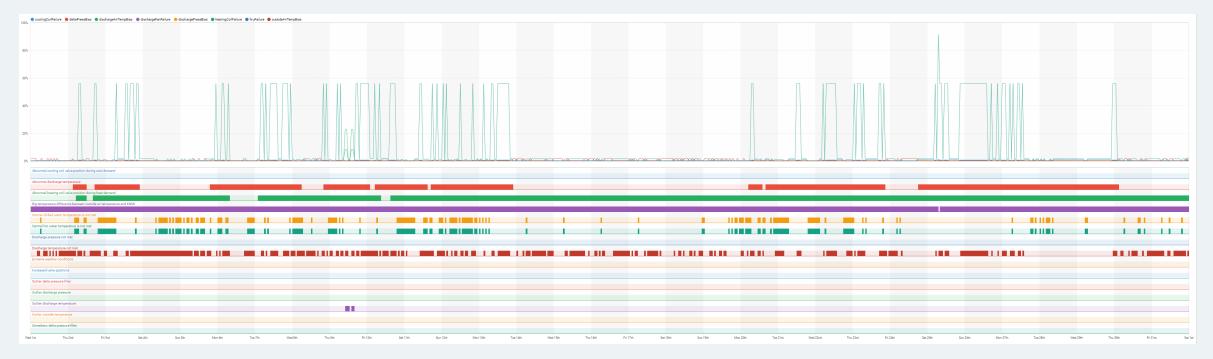


Fault probabilities and symptom states for 1 month:

- 1. Reported failure: stuck heating coil valve and broken valve actuator, temporary fix
- 2. Replaced valve actuator.

Fault probabilities and symptom states for 1 month after previous failure

- 1. Fault probabilities at 56% for large period caused by symptoms: abnormal heating coil valve position, discharge temperature not met, abnormal discharge temperature.
- 2. After fix of failure the prediction models are not reliable anymore: retraining of models is needed?!



Findings so far

DBN definition is complex

- Specific symptom definition is key to make distinction between failures.
- Probabilities estimation (both prior and conditional) is new for domain experts and too difficult. Solution for this:
 - failures are ranked in order of occurrence and then translated to prior probabilities
 - Symptom-failure relations are defined using classes (no, some, strong relation) and then translated to conditional probabilities.
 - Tool to evaluate impact by evaluating different symptom states combination helps to get a better feeling.
- The definition phase is time expensive: this can only be justified if the methodology is reliable and generically applicable.

Generic approach creates new challenges:

- Define minimum set of symptoms of which the state can be determined.
- Create a set of optional symptoms:
 - Should probabilities be adjusted based on the available symptoms?
- ML models for anomaly detection:
 - Automated cleaning of data and feature selection based on available data points and haystack data model

Reason why we are continuing this work is:

- A DBN approach makes it easier to do an **integral** evaluation a large set of possible diagnosis. This is valuable compared to (sub)component level rule-based analysis.
 - Current situation: when central hot water generation has a failure multiple faults are detected. Not only on the hot water generation but also on equipments using the hot water for heating.
 - Desired situation: the central hot water fault is diagnosed and all other equipments do not get diagnosed with a failure.
- The DBN approach is easy to expand with new symptoms and diagnoses because (using the noisy max approach) it is just a 2 dimensional matrix. This which makes it future proof and easy expandable

Planned work

- 1. Finish step 1 by evaluation the results of the DBN on multiple AHU's in our platform with known failures.
- 2. Create an improved DBN and integrate in the current logic for a 2nd iteration where we will apply the DBN on a larger scale to:
 - 1. Tune probabilities and symptom definitions
 - 2. Define failure probability thresholds for alerting.
- 3. Draw conclusion on the usability of the methodology

If the conclusion is that the DBN approach is a good approach, we will start working on creating DBN for other type of equipments.

Are the any questions!