Rijksdienst voor Ondernemend Nederland

Fault experiments to generate data from living laboratory

Karzan Mohammed & Srinivasan Gopalan

The project received funding from Dutch Ministry of Economic Affairs and Climate Policy and Ministry of the Interior and Kingdom Relations under the MOOI program

Contents

- Introduction
- Preparation for experiments
- Fault experiments
- Data exploration
- Reflections & Looking ahead

INTRODUCTION

Problems in the built environment

- Buildings consume 36 % of all energy (United Nations Environment Programme, 2021)
- Operational faults in HVAC system lead to:
- i. Up to 30% wastage (Granderson et al. 2018)
- ii. Poor Indoor Environmental conditions

Classification of fault detection and fault diagnosis methods

4S3F FDD method

Taal (2021)

- Diagnostic Bayesian network' with 7 types of nodes (4 symptoms 3 Faults)
- DBN is developed based on P&ID diagram
- Simultaneous diagnosis on multilevels

(Top-Down, Bottom-Up, & Middle-Out)

 Based on expert knowledge -Static

Gap & Objectives

• Limited datasets publicly available with ground truth on faulty & non-faulty data (Chen et al., 2023)

Objective:

- To introduce faults into the HVAC system
- To collect sensor data through BMS
- To collect occupant feedback (subjective data)

Why AHU?

- AHU used to meet space conditioning and air distribution requirements (Yu, Woradechjumroen and Yu, 2014).
- Lack of quality system integration could lead to failure or faults (Yu, Woradechjumroen and Yu, 2014).
- Number of AHUs are 20 times that of available maintenance personnel (Bruton et al., 2014).
- Complex control strategies require expensive external consultancies for diagnosing issues (Bruton et al., 2014).

PREPARATION

Why Kropman Breda?

- Represents a typical Dutch Office building
- Sensor density & data granularity
- Continuity of research collaboration
- Occupants' participation
- Cooperation of technicians & engineers

Source: Labeodan et al. (2016)

Recommissioning

- Re-commissioning done to ensure the following:
- (i) Sensors marked in the P&ID drawings are correct
- (ii) Sensors record the correct value
- (iii) Check for bias or drift in sensors
- (iv) Identify additional sensors needed

Installing additional sensors

Vibration sensors

Installed Location

Supply Fan

Heat Recovery Wheel

Heating Coil Valve

Supply pipe to Cooling Coil Valve

IEQ - AFDD

Airteq low-cost monitor

- Temperature
- Relative Humidity
- LUX
- Occupancy
- Sound level

FAULT EXPERIMENTS

Faults Studied

- The most common AHU-VAV faults studied in literature listed in Gunay, Shen and Yang (2017)
- Fault categories: design, operational & degradation.
- Scope: non-degradational, operation faults
- Chosen focus components: (i) heating coil, (ii) cooling coil, (iii) fans, (iv) filters, (v) heat recovery wheel, (vi) sensor offset, (vii) control setpoints

Implemented Faults

Fault implemented during operation hours; 1 day per fault

Category	Fault
Heating Coil Valve	Valve Stuck
	Unstable valve Control
Fan	Fan Stuck
Heat Recovery Wheel	Failure
	Stuck
Sensor Offset	Supply Air temperature Sensor
	Indoor Air Temperature Sensor
	Supply Air Pressure Sensor
	Supply Water temperature Sensor
Incorrect Setpoints	Maximum Supply Air Temperature
	Supply Air Pressure

Category	Fault
Cooling Coil Valve	Valve Stuck
	Unstable valve control
Fan	Fan Stuck
	Fan Failure
Heat Recovery Wheel	Stuck
	Failure
Sensor Offset	Supply Air temperature Sensor
	Indoor Air Temperature Sensor
	Supply Air Pressure Sensor
Incorrect setpoints	Maximum Supply Air Temperature
	Supply Air pressure Setpoint
Filter	Filter fouled
	Filter broken

QUESTIONNAIRE SNAPSHOT

A snapshot of the questionnaire to be used for the experiments.

Occupant feedback requested 3 times a day.

DATA EXPLORATION

Number of Responses per Room Number

REFLECTIONS & FUTURE PLANS

Reflections

- Ground truth & algorithms will be for the operation of Kropman Breda
- Control strategy: small commercial buildings often keep changing the operating settings; difficult to have a fixed baseline, non-faulty operational data
- Subjective data: pain points of occupants; research-friendly vs occupant-friendly questionnaire; collecting data at diff. levels (room, zone etc.)

- Develop machine learning-based fault detection algorithms with focus on data quality, sensor requirements, and ability to adapt to different buildings.
- Connecting Occupant feedback to BMS data and use it to diagnose faults.

THANK YOU

The project received funding from Dutch Ministry of Economic Affairs and Climate Policy and Ministry of the Interior and Kingdom Relations under the MOOI program