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Introduction to Kropman B.V.
and Avans Hogeschool

Kropman B.V.

Founded in 1934 in Nijmegen, the Netherlands, Kropman B.V. is one of the top Dutch installation
companies with 13 regional branches throughout the country. With the mission to make buildings
greener, healthier, and more efficient, Kropman specializes in design, realization, management,
and operation of buildings installations. At Kropman, they are convinced that there is only one
meaningful way to build and that is sustainable building.

As an integrated technical service provider, Kropman provides services from design and con-
sultancy to execution and maintenance, and covers the fields of mechanical engineering, elec-
trical engineering, measurement and control technology, contamination control, and prefabrication.
They work with sectors of utilities, healthcare, pharmaceuticals, and industry.

As part of a multi-stakeholder project, Brains for Buildings (B4B), Kropman is working toward
smart control technologies for building energy flexibility. This collaborative work involves several
students, each contributing to different aspects of the project. This internship is also part of the
project, with a specific focus on Electric Vehicle (EV) charging load flexibility.

Avans Hogeschool

Founded in 2004, Avans Hogeschool comprises 21 schools spanning fields like Economics and
Business, Engineering, Health Care, Arts and Culture, and more. This diversity empowers Avans
to provide a comprehensive range of practice-oriented education and research prospects.

Part of Avans Hogeschool’s project for smart energy research and education, Smart Energy
Delivery Lab (SEND Lab) is a hub for research in sustainable energy utilization. The lab focuses
on integrating advanced technologies into energy systems, particularly in the context of energy
conservation, sustainable energy incorporation, and practical applications for both consumers and
businesses. The aim is to enhance the intelligence of energy networks, ensuring a harmonious
balance between energy supply and demand.

The lab consists of a Net-zero Energy Classroom (NEC) and a Smart Grid setup, enabling
a hands-on learning experience that bridges the gap between research and education. Guided
by a comprehensive development plan and fostering collaboration between research, education,
and industry, they have a vision to evolve it into a vibrant learning environment accessible to
students and researchers. Also part of the B4B project, SEND lab focuses on the development
of the hardware system for EV smart charging simulation, which is part of the objective of this
assignment.
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Abstract

With the trend of electrification, higher penetration of renewable energy in the grid, and increasing
EVs, smart control strategies gain interest. From these strategies, EV smart charging is getting
attention to provide demand side flexibility, reduce peak demands, and to provide support to
the existing electricity grid for better system performance. The thesis is part of the Brains for
Building’s Energy Systems (B4B) multi-stakeholder project, focusing on the development of a
smart EV charging controller for energy flexibility in buildings. The work carried out is a part
of a continuation project that has an objective of establishing a testbed for bi-directional EV
charging. In order to achieve that overall goal, this study is aiming to improve and test an EV
charging controller and establish a Hardware-in-the-Loop (HIL) testbed at Avans’ Smart Energy
Lab. The objectives of the project include enhancing the controller, testing it through simulation,
constructing the HIL testbed, and analyzing the controller with the testbed.
Following a thorough literature review, this thesis delivers a HIL testbed and a 1 directional
(charging only) EV charge controller integrated with it. The simulation results confirmed the
controller’s ability to shift charging load (demand side management) for better energy perform-
ance with Key Performance Indicators (KPIs) values indicated. Also, the HIL testbed successfully
emulates EV charging sessions, providing insights on charging efficiency.
In conclusion, the project brings the controller closer to the real system application and provides
a testing environment for its future development. In addition, the built HIL testbed can serve as
an accelerator for future research on a smart controller system.

French Version
Avec l’électrification croissante, la montée des énergies renouvelables dans le réseau et la multi-
plication des véhicules électriques (EV), les stratégies de contrôle intelligent gagnent en intérêt.
Parmi elles, la recharge intelligente des EV se démarque pour sa capacité à offrir de la flexibilité
du côté de la demande, à atténuer les pics de demande et à renforcer le réseau électrique existant
en vue d’améliorer ses performances globales. Cette thèse s’inscrit dans le projet multi-acteurs
”Brains for Building’s Energy Systems” (B4B) et vise le développement d’un contrôleur intelligent
de recharge pour les EV dans le but de gérer la flexibilité énergétique dans les bâtiments. Dans
la continuité d’un projet préexistant visant à établir une plateforme de test pour la recharge bid-
irectionnelle des EV, cette étude a pour objectif d’améliorer et de tester un contrôleur de recharge
pour les EV, tout en mettant en place une plateforme de test en boucle fermée (HIL) au sein
du Smart Energy Lab d’Avans. Les objectifs incluent l’amélioration du contrôleur, sa validation
par simulation, la création de la plateforme HIL et l’analyse du contrôleur au moyen de cette
plateforme. Suite à un examen approfondi de la littérature, cette thèse propose une plateforme
HIL ainsi qu’un contrôleur de charge unidirectionnel (recharge uniquement) pour EV intégré à
celle-ci. Les résultats de simulation ont confirmé l’aptitude du contrôleur à décaler la charge de
recharge (gestion du côté de la demande) pour améliorer la performance énergétique, avec des
indicateurs clés (KPIs) démontrant cette capacité. En outre, la plateforme HIL simule avec succès
des sessions de recharge des EV, fournissant des informations sur l’efficacité de la recharge. En
résumé, ce projet rapproche le contrôleur de l’application réelle du système et offre un environ-
nement de test pour son futur développement. La plateforme HIL établie peut également servir
d’accélérateur pour les futures recherches sur un système de contrôle intelligent.
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Chapter 1

Introduction

1.1 Background of the Project

The project is part of work package 2 (WP2) of the Brains for Buildings (B4B) multi-stakeholder
project, aiming to explore ”the development of smart control models to increase energy flexibility
(heat, cold and electricity) within buildings”. As an element getting increased attention within
the Building Management System (BMS), EV charging load presents substantial potential for
contributing to energy flexibility, which will be the scope of this thesis.
This project work is a continuation of Roeland in ‘t Veld, the student who also collaborated with
Kropman for his graduation thesis [9]. The two stakeholders closely involved in my assignment
are Kropman and Avans University. Kropman anticipated the improvement and testing of the EV
charging controller initiated by the preceding student. On the other hand, Avans University seeks
to establish a Hardware-in-the-Loop (HIL) testbed in its Smart Energy Lab.

1.2 Project Objectives

Considering the mutual interests of the company and the university lab, the aim of this assignment
is to continue the development of the EV charging controller and build a testbed at Avans’ Smart
Energy Lab for its testing. The results expected in the end of the project include:

1. An improved controller integrated with the testbed.

2. Performance of the modified controller based on simulation.

3. A HIL testbed able to mimic an EV charging session.

4. Realtime emulation results using the testbed.

To reach the goals, this work is structured into three phases:

1. Improving and preparing the controller for the testbed testing.

2. Establishing a HIL testbed and integrating with the controller.

3. Controller testing on the testbed and result analysis.

1.3 Motivation

This section describes the background and reason why EV smart charging and a HIL testbed are
of interests in general.

Hardware-in-the-Loop Testing for Smart Charging Controller Development 1



1.4. PROJECT CONTRIBUTIONS AND OUTLINE CHAPTER 1. INTRODUCTION

EV Smart Charging

The acceleration in EV adoption, coupled with the rapid development of renewable energy sources,
reflects countries’ collective commitment to combat climate change and promote sustainable prac-
tices. However, uncontrolled EV charging poses significant challenges, as vehicles are often charged
at maximum power immediately upon plugging in until reaching full capacity. This charging pat-
tern, combined with diverse charging behaviors, can lead to high-power peaks on the grid, straining
various aspects of the energy system.

For instance, from the viewpoint of an asset owner who has EV chargers and Photovoltaic
(PV) on the roof, the challenges could be: [6], [14]

1. Mismatch between EV charging demand and (green) energy supply, leading to curtailment
and low self-sufficiency.

2. Overloading existing infrastructure capacity, imposing stress on the grid or bringing extra
capacity cost.

3. Inducing grid stability issues, such as deteriorating grid characteristics or grid congestion.

A study conducted on Belgium’s grid illustrates that a 30% EV penetration could result in
a 10% increase in peak demand, highlighting the potential grid-related issues arising from the
proliferation of EVs. [14] Alternatively, smart charging strategies provide an optimal means of
utilizing existing infrastructure, averting challenges without extensive infrastructure upgrades.

Hardware-in-the-Loop Validation

To fully harness the potential benefits of EV smart charging within buildings, it is imperative
to thoroughly evaluate the performance and impact of the developed charging controllers. While
a pure software-based simulation offers convenience, it may fall short in replicating real-world
conditions accurately. As a solution, the emergence of HIL testbeds has gained popularity across
various research fields.

The significance of the HIL testbed lies in its integration of simulation models with real-world
hardware. This enables researchers and developers to subject their smart charging controllers to
realistic scenarios and dynamic grid conditions, all within a safe and limited laboratory environ-
ment. Recognizing the advantages of HIL testbeds, the establishment of a dedicated EV charging
testbed at Avans’ Smart Energy Lab presents opportunities.

1.4 Project Contributions and Outline

As mentioned, the main goal of this assignment is to continue the uncompleted smart charging
controller and its testing in the Smart Energy Lab at Avans University. The previous student has
done a case study on Kropman Breda office, proposed an algebraic model for the optimization,
and initiated the controller algorithm. In this assignment, the controller is adapted, improved,
and integrated with a HIL testbed also being built in the assignment. In addition, testing and
simulation are done, followed by analysis and discussions.

The next chapter starts with a review of the literature on the topic and also the project
status. Chapter 3 introduces the design of the system, including the testbed and the smart
charging algorithm. Chapter 4 dives into the details of the integrated system including the system
communication flow and the system configurations. Chapter 5 focuses on the testing scenarios
and methodologies involved in the analysis. All the simulation and testing results are presented
and discussed in chapter 6. Finally, the conclusion, recommendation for future work, and self
assessment are drawn in chapter 7.

2 Hardware-in-the-Loop Testing for Smart Charging Controller Development



Chapter 2

Background Review

This chapter provides background information on both the topic and the project. The first part
shortly introduces the state-of-the-art on the two topics: EV smart charging and HIL testbed. In
the second part, previous student’s work is summarized to recap the project and draw the starting
point of this project.

2.1 Literature Review

2.1.1 EV Smart Charging

Review articles on EV charging present a wide range of benefits to charge EVs with control
and integrate it with the power grid [2], [14], [15], [16], [3], [6].. They suggested that EV smart
charging can enhance grid stability, reduce both energy and capacity cost, and promote sustainable
development. In addition, the strategies enable EVs to provide ancillary services and frequency
control, transforming EVs from potential grid stressors into active contributors to grid resilience
and reliability. These benefits are not only shown in simulations but also in current practice as
explored in [6].

State-of-the-Art

There are various strategies to achieve dynamic charging based on time-varying energy price
or real-time load balancing. Literature with different system constraints and objectives applies
different control manner and optimization methods. Instead of passively reacting to the real-time
dynamics in the system, more and more strategies integrate advanced technologies to perform
better controlled charging. Below shows some of the examples interesting for this project.

1) Schedule Optimization [1] suggests that proper scheduling EV charging can ensure grid
stability. The control can be done in both centralizing or decentralizing manner, depending on the
scale and communication infrastructure availability. The optimization can be implemented with
various mathematical optimization methods, while more complicated approaches such as genetic
algorithm and stochastic model, are also recommended since they allow decision-making under
uncertainties.

2) Load prediction [13] presents an example of optimizing an office building’s system perform-
ance by an automatic learning algorithm-based strategy based on the predicted available power.
In this case, the charging power is limited to be either maximum or 0, which is indicated by a
binary integer.

Instead of using binary charging power, the three-step strategy proposed in [18] can vary
between 0 and maximum. The optimization is implemented with dynamic programming and
considering the future horizons in a rolling manner. These allow diverse objective functions and

Hardware-in-the-Loop Testing for Smart Charging Controller Development 3



2.1. LITERATURE REVIEW CHAPTER 2. BACKGROUND REVIEW

real-time control. Performing in a partially decentralized manner, this method offers an effective
compromise between optimization and scalability.

Another predicting strategy that is getting attention is the charging load prediction. [7] displays
a data-driven approach integrating machine learning (XGBoost) to predict arbitrary charge profiles
in a smart charging algorithm. It concludes that such integration enhances infrastructure usage by
showing a 21% increase in charged energy under limited infrastructure. Other examples making
charging load prediction with different approaches can be found in [6] and [1].

3) Bi-directional Charging [10] shows the potential key role bi-directional charging could play
in smart charging. A multi-objective optimization is utilized to minimize both the cost and the
grid dependency. In this case, not only the predicted local load demand is considered but also
the predicted PV power production. The results demonstrate a significant decrease of 167.71%
in operating costs compared to the algorithm considering only one-directional charging, and a
28.85% higher peak reduction compared with conventional EV bi-directional charging.

This Project

This project focuses on a centralized scheduling optimization control strategy with Model Predict-
ive Control (MPC). In this step, only single-directional charging is considered while bi-directional
is the ultimate goal of the project. The system is formulated as a non-linear mathematical model
without involving integer variables. Forecast building load and PV generation are utilized, while
charging load prediction is not considered due to the small fleet presenting in the Kropman Breda
Office.

2.1.2 Hardware-in-the-Loop Simulations

Introduction

HIL simulation is a testing method used for system development, which integrates real hardware
into a simulation loop. [11] highlights its important role when it comes to safety requirements for
testing, real-time simulation, cost, and unfeasible modeling. The technique was an essential part
in the industry and research on flight and aerospace, not only due to the safety concerns but also
the pressure to reduce the development cycles. As power electronic systems and electric drives
become more complex and development speed is crucial, HIL simulation is increasingly used in
areas such as power systems, vehicles, and system controllers, as demonstrated in this project.

The two types of HIL are presented in Figure 2.1. The difference between them is that Power
Hardware-in-the-Loop (PHIL) includes actual power hardware and allows the testing with rated
power corresponding to the actual electrical system. But for Controller Hardware-in-the-Loop
(CHIL), only signals are simulated, which is usually used for model validation. [19] In this project,
PHIL is applied for investigation of the power flow during the charging sessions.

Application Examples

One example for a HIL is presented in Figure 2.2, which is used to test the feasibility of the
self-driving controller [4]. The structure is similar to the testbed setup in this project while in
this case, it is signals and information that flow in the loop. Compared to our case, we have a
charger module as the actuator directly connected with the controller via Controller Area Network
(CAN)bus, and a battery model emulating the charging behavior of an EV.

Another example can be found in [5] and [20]. As two connected studies, they present a similar
system setup where a real-time PHIL testbed is built for testing a smart charging algorithm. The
charging algorithm is designed to charge EVs as much as possible with a minimal total charging
cost. The testbed is built with a grid emulator, an EV emulator, a Electric Vehicle Supply Equip-
ment (EVSE), a Alternating Current (AC) charger, and a real-time simulator. The author suggests
that, for the charging algorithm, the delay caused by execution is more impactful compared with
communication delay and recommends that the frequency of giving current setpoints could be 5
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Figure 2.1: Two hardware-in-the-Loop setups [12]

Figure 2.2: Example of a PHIL Experimental Structure for a Self-Driving Vehicle [4]

minutes instead of 1 minute. On the hardware side, it is noted that a real-time simulation en-
hances the reliability of the algorithm assessments while the simplicity of the system also needs
to be considered.

2.2 Project Review

This section provides background of the project and the previous project status done by the
student Roeland in ‘t Veld [9]. It will be started by an overview of the Kropman Breda Office and
its current charging situation, followed by the system setup considered for this project.

2.2.1 Kropman Breda Office

The office is equipped with different loads and roof-top generation with an energy management
system, allowing data collection, processing, and storage. Both the historical and forecasted data
are processed by a Continuous Monitoring System (CMS) called InsiteSuite and stored in the
database called InsiteReports, which is accessible for this project. The data has a minimum res-
olution of 5 minutes. Apart from this, an online application is used to collect EVs’ presence data,
where employees can fill in the information of the arrival time, expected departure time, and the
required charged energy (kWh). The overview of the building system and data management is
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shown in Figure 2.3.

Figure 2.3: Overview of the Building Monitoring and Database

The office has two type 2 EV chargers (4 ports in total) with maximum power at 7.4 kW
(1 phase/32A) or 22 kW (3 phase/32 A) and PV panels on the roof. The PV has a maximum
capacity of 16.9 kW at the moment while there are still some spaces for the possibility to scale up
the PV production.

2.2.2 Current Charging Situation

Currently, the EV charging is not controlled, meaning all the EVs start charging at the max power
until full capacity is reached. The power curve under this condition is shown in Figure 2.4, as
indicated ‘EV historic’ and ‘Grid uncontrolled’. We can see that the demand in the morning is
relatively high, which is caused when employees arrive and together start charging their EVs.
Moreover, it is found that most of the EVs get a full charge before noon and then stay idled
until the employees get off from work. Therefore, the idea of the project is to develop a charging
controller which shifts and distributes the charging load based on the forecasted building load, PV
generation, and EV information to shave the undesired power peaks. Considering only the office
hours, this controller only schedules for hours during 6:00 to 18:00 during the weekdays.

2.2.3 Smart Charging Controller System

To flatten the power demand curves, this project focuses on the solution of adopting a smart char-
ging controller to control the charging current of each EV. The controller used in this assignment
was initiated by the previous student Roeland in ‘t Veld [9].

The considered system is formulated as shown in Figure 2.5. The charger charges according to
the set current (Iset,t) sent from the smart charging controller. The set current is determined by the
smart charging controller, who implements optimization based on the latest known forecasted data,
considering the best schedule for each present EV. Since the controller is set to run iteratively, each
sent set current is the latest optimization result calculated by the updated data in the database.

Based on software-based simulation, the previous student concluded that the proposed control-
ler concept is able to flatten the power curves and increase self-consumption. One of the simulation
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Figure 2.4: Controlled and uncontrolled charging scheme [9]

results is shown in the Figure 2.4, as indicated ‘EV controlled’ and ‘Grid controlled’, where the
peak reduction is presented.

Figure 2.5: System setup
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Chapter 3

System Design

The system overview is illustrated in Figure 3.1. Following, the testbed and the algorithm of the
controller will be explained.

Figure 3.1: System overview

3.1 Hardware-in-the-loop Testbed

The aim of the testbed is to mimic the power flow during a charging session based on the system
discussed previously (Figure 2.5). Since there is only one charger module available, the testbed
can emulate the charging session for a single EV. Also noted that an EV-EVSE interface (such as
Combined Charging System (CCS) or Charge de Move (CHAdeMO)) is not involved in the system
so the control of the charger is fully based on the controller running on the host computer, which
is connected with all the other components for data collection. The structure of the system is
shown in Figure 3.1. The details on each component’s specifications, purposes, and I/O interfaces
are described below: (the interface figures can be found in Appendix A).

Power Monitoring Device (SENTRON PAC4200)

The power meter is placed between the grid and the charger, and is only connected when doing
the power factor measuring. There are two supervision methods available: the monitoring screen
and through Modbus protocol. Figure A.1 is the Modbus package on Matlab interface.
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PRE Charger Module

The EV charger module used in the testbed is a 10kW bidirectional Direct Current (DC) power
concept for EV chargers. During testing, the charger is directly connected to the grid and only
charging mode is applied. In charging mode, the charger intakes 3 phase AC power and converts
it to DC as output. According to the data sheet, the charger has a high efficiency, over 0.95,
because of the use of active Power Factor Correction (PFC) technology. The charger is compatible
with the CCS and CHAdeMO charging standards and can be fully controlled and monitored by
CAN-open protocol or its in-built monitoring interface(Figure A.4). In our testing scenarios, no
EVSE is integrated so the operational commands (enable/disable), the set charging current, and
the set voltage are all assigned by the controller via CAN-bus.

Cinergia GE&EL+ vAC/DC Battery Emulator

The emulator is a regenerative converter, which can operate in different modes (for instance DC
load, AC grid emulator, power amplifier, etc.) according to various experimental needs. In our
case, it is used to emulate an EV battery, so it’s working in the battery emulator mode. With
its ability to replicate voltage and current characteristics of diverse batteries, we can investigate
battery charging dynamics and performance. The battery characteristics and (initial) status can
be specified and monitored via the Modbus/ethernet or its in-built monitoring interface (Figure
A.3. The parameters present in Figure 3.2 are applied as the battery model for the testing, which
is set according to the Nissan Leaf model. The emulator can work with up to 100kW and achieves
up to 95% energy efficiency.

Figure 3.2: Parameters of the Battery model (Cinergia)

Controller (Host computer)

The host computer is where the smart charging controller is located. The host computer controls
charger’s charging according to the optimization result. The communication between the controller
and charger is through CAN-bus, based on CAN-open library. The optimization process can be
supervised via the controller terminal, where the new coming EV, leaving EV, and the present
EV current status are all presented with the timing indicated. (Figure A.2.) The details of the
control and optimization algorithm is followed in the next section.
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3.2 Smart Charging Algorithm

The python-based smart charging algorithm of the controller is adopted from the previous student
[9]. The modifications include considering dynamic pricing schemes, the optimization model, and
integrating the I/O interface for hardware communication.

The role of the controller is determining the charging current set point for each EV and
sending the set point to the charger. To achieve these, the controller consists of an algorithm
performing schedule optimization, a MPC controller, and the communication interface with the
charger. Figure 3.3 shows the structure of the algorithm. Following Table 3.1, where all the
variables and parameters are listed, the MPC and optimization model will be explained.

Figure 3.3: Structure of the Charging Algorithm

In Table 3.1, the input variables are the uncontrollable factors which will be loaded from
the database and external data source. On the other hand, the set parameters are the settings
corresponding to the real systems constraints or assumptions, which will be further explained in
Chapter 4.

3.2.1 Input Variables

With the goal of matching the demand with PV generation and flattening the power demand
from the grid while taking cost into account, the schedule optimization is made considering the
building load power, PV generation, and electricity price (indicated as ”future data” in the pink
box in Figure 3.3). Since the current set point depends on the whole schedule in the future
horizon, the decision requires the forecast future data. The load data are accessible from the
InsiteReports database and the electricity price curve is obtained from the nieuwestroom website.
Noted that a separate variable λt,sign which indicates the positive or negative price is created to
handle the possible negative price without involving complex integer programming. All the data
are resampled to 5 minutes, as the minimum resolution for the data from the database.

Besides, the EV present time and request energy specified by the users are taken into account
(they are included in the ”To-be-scheduled EV list” shown in the Figure 3.3) . While the literature
suggests that incorporating State of Charge (SOC) status and charging load predictions could
yield improved outcomes, these factors are not considered in this instance due to the constraints
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Table 3.1: Variables and Parameters

Input variables Description Unit
Pbuilding,t Predicted building load at time t kW

Ppv,t Predicted PV generation at time t (+ as generate) kW
λt Electricity market price at time t Euros/MWh

λt,sign The sign of electricity market price at time t -1 or 1
Tarrival,i The arrival time of EV i Datetime

Tdeparture,i The expected departure time of EV i Datetime
Erequested,i The requested energy of EV i kWh

Set parameters
Ts Set points resolution (Time between iteration) 5 minutes

ηcharger Charger efficiency -
ηbattery Battery efficiency -
imin Minimum charging current 6 A
imax Maximum charging current 20 A

vcharger Charger voltage 380 V
Weight The weight of the penalty term 40 for OF1, 0.4 for OF0

Decision variables
Iset,t,i The charging current scheduled for EV i at time t A

Dependent variables
Pgrid,ev,t,i The grid power for charging EV i at time t kW
Pcharged,t,i The charged power of EV i at time t kW

Et,i The energy charged by EV i at time t kWh
Earrival,t,i The energy EV i has when t = Tarrival,i kWh

Edeparture,t,i The energy EV i has when t = Tdeparture,i kWh
Erequested,t,i The remaining requested energy of EV i at time t kWh

Note: t indicates time, whose range changes with the future horizon of each iteration, from the current
time to the end of the future horizon. i indicates EV id, ranging from 0 to 4 for Kropman Breda office.

of the office. A former student, Somer, highlighted the challenge of capturing precise EV charging
pattern for a relatively small-scale site in his research [17]. Furthermore, regarding the SOC
information, given the constraints imposed by the charging infrastructure at Kropman Breda
Office, the algorithm considers the charging status based on a predefined charging model, which
will be elaborated in the next section.

3.2.2 Model Predictive Control (MPC)

To optimize the charging load for lower Power Peak Reduction (PPR) and the total energy cost,
the charging current at each moment needs to be decided considering future system dynamics.
Therefore, MPC is applied to specify the future horizon utilized by the optimization model. The
future horizon in our case is bounded within the working hour, between 6:00 to 18:00, and is
updated every iteration along with the shift of the current time. Considering the computation
time and the possible resolution of the input variable, the controller time step is selected as 5
minutes [9], which is also suggested in [20]. In each step, MPC ensures the data within the
corresponding future horizon is prepared for the optimization model, who will then predict the
best charging schedule within the same horizon.

Two screenshots from the simulation on 21/03/2022 are presented in Figure 3.4, where the
orange dashed line draws the predicted schedule at that moment, and the blue line out of the
window indicates the past periods where the set currents had been sent to the charger. The
mentioned future horizon in this context spans from the ’current time’ to the ’end of the schedule
time’ (which is set to be 18:00). As we can observe from the screenshots, the predicted charging
schedule might vary in each step. This could be due to the change of the forecast data or EV
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presence, or there are multiple solutions for the minimization problem.

(a) screen shot at 11:50:00 (b) screen shot at 12:05:00

Figure 3.4: MPC simulation screen shots at different time

To address the missing real-time information on EVs’ presence and their SOC status, a sep-
arated comma-separated values (csv) file is created to keep their approximated real-time status
recorded. The file includes all present EVs’ arriving/departure time and their remaining requested
energy to be charged. In each iteration, the controller accesses the file and updates it by adding
new arriving EV, removing the left ones and those finished charging, and adjusting the remain-
ing requested energy for each car. The update of remaining requested energy is governed by the
battery model considered in the optimization 3.3. After this status update, a feasibility check on
the energy requests is done for each case before starting the optimization process. In cases where
the requested energy exceeds the maximum deliverable energy before the planned departure, the
request is modified as the maximum achievable charging energy.

3.3 Optimization Model

The purpose of the optimization model is to find the optimal charging schedules for all the present
EVs considering overall charging cost, grid power consumption, and charging performance within
the specified future horizon. The minimization problem is solved by the Interior Point OPTimizer
(iPOPT) solver using the Python Optimization Modeling Objects (Pyomo) package, which was
selected considering the possibility of a non-linear objective function [9]. The details of the model
and the proposed alternative objective functions will be presented below, with the parameters
shown in Table 3.1.

3.3.1 System Models

Charging Power

The charging model is modified to fit the DC charger on the testbed. Based on [8], ηcharger is
taken as a constant 88% and ηbattery is considered as 97%, resulting in a total charging efficiency
of around 85%. The charging power is model as:

Pgrid,ev,t,i · ηcharger = Iset,t,i · vcharger (3.1)

Pcharged,t,i = Iset,t,i · vcharger · ηbattery (3.2)

where Pgrid,ev,t,i means the power requested from the grid for charging the EV and Pcharged,t,i

indicates the battery charged power.
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Battery Model

Et,i =


Earrival,t,i if t = Tarrival,i

Earrival,t,i + Pcharged,t−1,i · Ts

60 if Tdeparture,i > t > Tarrival,i

Erequested,t,i if t = Tdeparture,i

(3.3)

Power System Balance

Pgrid,t = Pbuilding,t +
∑
i

Pgrid,ev,t,i − Ppv,t (3.4)

3.3.2 Constraints

Charging Current

The maximum charging current depends on the charger specification. In our case, it is limited by
the hardware specification and stability. On the other hand, considering some types of EV require
a minimum charging current to keep the connection between the charger and EVs, a lower bound
is applied [5].

Iset,t,i =

{
imax > Iset,t,i > imin if Tdeparture,i > t > Tarrival,i

Iset,t,i = 0 if Tdeparture,i < t or t < Tarrival,i

(3.5)

Charging Current Difference Term

This variable indicates the switching level between each iteration. It is created to smoothen the
charging profile.

Idifft,i =
∑
i

(
∑
t

((Iset,t,i − Iset,t−1,i)
2)) (3.6)

3.3.3 Objective Function

The Objective Function (OF) is the key determining the quality of the optimization results.
However, since there is no clear definition for the best charging schedule that we can follow, this is
something that needs to be discussed and experimented. There are three OFs being investigated
in this experiment:

Baseline Case (OF0): With Penalty Term

OF0 is proposed by previous student, Roeland in ‘t Veld, with modification to consider the dynamic
price curve. To recap, the latter term of Eq 3.7 is a penalty function used to ensure better charging
efficiency. And the square for the power terms is applied to penalize very high peaks to achieve a
flatter load profile while also avoiding high prices. [9]

OF0 =
∑
t

(λt,sign · (λt · Pgrid,t)
2 −Weight ·

∑
i

(
1

1 + λt
· Pgrid,ev,t,i)

2) (3.7)

Adopted Version (OF1): With Charging Current Difference Term

To smoothen the charging curve, the Charging Current Difference Term (Idifft,i) is included in
the OF to minimize also the overall current difference. The Weight, therefore, works as the factor
determining the balance between the smoothness of the charging profile and the overall charging
efficiency.

OF1 =
∑
t

(λt,sign · (λt · Pgrid,t)
2 −

∑
i

(Weight · ( 1

1 + λt
· Pgrid,ev,t,i)

2 − Idifft,i)) (3.8)
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Basic Case (OF2): Pure cost function

When it comes to the robustness of an OF in this case, it means whether it fits different scenarios
and system setups. In previous OFs presented, they all included the Weight, which is a parameter
need to be defined based on trial and error. Since the trial and error are based on a certain dataset,
the best value could be different from case to case. Also, the unclear definition of the ’best value’
makes the determination even harder. Therefore, the Basic case, which considers only the cost
and grid power, is also investigated.

OF2 =
∑
t

(λt,sign · (λt · Pgrid,t)
2) (3.9)
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Chapter 4

System Integration and Setup

The completed testing system is demonstrated in this chapter. The controller is adapted for
connecting with the hardware and monitoring the data flow in the system. The data exchange
in the hardware system is based on the physical buses. With the testbed prepared, the testing
scenarios and KPIs are defined in the end of the chapter.

4.1 Hardware Integration and I/O

Figure 4.1: Testbed in the Smart Energy Lab

The hardware system is shown in
Figure 4.1, with connections de-
scribed in Figure 4.2. In reality, the
power running in the system is just
going as a loop. After the charger is
enabled by the controller, it will draw
3-phase AC power from the grid, con-
verting the power to DC, and charge
the battery emulator according to
the set current sent by the controller.
The emulator will emulate the elec-
trical characteristics of the battery
based on the flown-in power and the
set battery model, and then sends
the power back to the grid.

With the testbed able to mimic
the communication behaviors of EV
charging sessions, the next step is to
replicating the simulated behaviors
on the testbed to validate the functionality of the controller. To do this, the devices are made
to return the desired measured values back to the controller, as shown in Figure 4.2. Noted that
the measurements are not used for optimization purposes, but only for the later analysis. With
measurements from a power meter, the charger, and the emulator, the dynamic of the charging
power flow can be investigated. The details of the measurements are described below in Table 4.1.
Since the measurements are not synchronized, the time label and resolution of the returned data
from different devices are not matched. For instance, each measurement point from the charger is
returned right after a set point is sent to the charger. Therefore, the return frequency depends on
the execution time of each iteration. The reason for not making measurement in a fixed frequency
is to avoid the error that happens when two commends are sent to the charger. On the other
hand, the measurement from the battery emulator is controlled by the emulator itself. It has a
fixed resolution, but is not matching with the data label of the charger measurement. Therefore,
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Figure 4.2: Testbed communication diagram

Measurement Description Device Unit

PF The power factor between grid and charger. Power meter -
Vac(LN),avg Read value of the average input voltage of three AC phases (line-neutral), in 0.1 V steps. Charger V
Iac,avg Read value of the average input current of three AC phases, in 0.1 A steps. Charger A
Vdc Read value of the output voltage, in 0.1 V steps. Charger V
Idc Read value of the output current, in 0.1 A steps. Charger A

(Positive: DC current delivered by module. Negative: DC current delivered to module.)
Vbattery Battery voltage measured by the battery emulator. (affected by SOC status) Emulator V
Ibattery Charging current measured by the battery emulator. Battery emulator A
Pout,global Read value of the active output power by the battery emulator. Emulator W

(Positive: power goes out. Negative: power goes into emulator (charging mode).)

Table 4.1: Measurement Details

resampling and data matching is needed to make comparisons between the data. In this case, the
data resampling is done by Excel and processed on separated segments. The process details will
be explained in the next chapter.

4.2 Adapted Controller

To integrate the controller in the system, the I/O interface with the charger and other monitored
devices needs to be added. The data exchange between the controller and the charger is done
based on CANopen (Controller Area Network open), a high-level communication protocol based
on the CANbus. Since the charger module requires CANbus messages on a regular basis, the
controller is made to send a message at least every 0.5 seconds as recommended by the data sheet.
To keep the connection alive, a thread sending the latest updated charging set current (Iset,i)
is activated right after the initialization of the communication connection. The flowchart of the
charging controller is presented in Figure 4.3.

4.3 System setup

The fixed system setup used in the following tests is described below: The schedule horizon con-
sidered during the day is between 6:00 to 18:00, which is the working hour. The battery’s nominal
voltage is set to be 350V and charger at 380V. The initial SOC is set to be 50%. The maximum
charging current is set as 20A to have a maximum charging power of 7.6 kW theoretically. And
the minimum current at 6A to keep the connection. [20] After every optimization iteration, there’s
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a brief 2-second delay to ensure new optimization iterations start after the last result is delivered
to the charger. Noted that the actual time between iterations varies depending on the calculation
time of the optimization model in each iteration.

With the system integrated and prepared, the controller was tested under various scenarios for
functionality validation and performance evaluation.

Figure 4.3: Flowchart of the controller
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Chapter 5

Methodology

The aim for the testing is to validate the load shifting ability of the controller under different
scenarios and investigate the performance when running on the testbed. This chapter starts
with presenting the implemented testing scenarios, followed by the result analysis processes. The
testing scenarios include the PV capacity and the control strategies, which are tested for 3 days
in different seasons. The Key Performance Indicators (KPIs) of energy system performance are
utilized to evaluate and compared the outcomes of the scenario testing. Furthermore, the process
for investigating the results from the testbed is presented.

5.1 Testing Scenarios

The 3 days taken for simulation are 21st March, 22nd June, and 12th December in 2022, that can
be seen as representations of different seasons during a year. The building load doesn’t variate
much on these three days as shown in Figure 5.1. The main difference is the PV production, whose
profiles are illustrated in Figure 5.2. 12th December 2022 shows a low generation profile with the
peak at around 8 kW. 21st March 2022, on the other hand, presents a higher generation profile,
with the peak at around 12 kW. With a similar high peak production, 22nd June 2022 represents
the day whose peak comes later in the early afternoon.

The EV information tested on the days is listed in Figure 5.4. To test the scenario where 4
chargers are all in use, one car’s information is artificially.

Table 5.1: Testing scenarios

Scenario Description
Control Strategy Uncontrolled / Controlled with OF0, OF1, OF2

PV Capacity Current capacity (16.9 kW) / The scaled-up capacity (25.2 kW)

Control Strategy

Four charging strategies are investigated: uncontrolled and controlled with OF0, OF1, and OF2.
When uncontrolled, the EVs will be charged at the maximum power directly after they are plugged
in until fully charged. When controlled, the three objective functions mentioned in Chapter 3 are
all tested. OF0 is used as the baseline for OF1 to assess the functionality of the added Charging
Current Difference Term (Idifft,i). OF2, on the other hand, is used to evaluate the lowest cost
the system can provide.
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Figure 5.1: Building Load

Figure 5.2: PV Production

Figure 5.3: System Profile on the Three Investigated Days

ID Requested Arrival Departure
energy (kWh) time time

2 36 7:40 14:15
0 46.74 7:45 14:30
3 46.74 7:55 14:30
1 39.03 8:30 16:45

(a) EV Information tested on 21st March 2022

ID Requested Arrival Departure
energy (kWh) time time

3 36.84 6:30 17:00
2 36.84 7:00 17:00
1 14.85 7:45 11:00
0 35.06 11:30 16:30

(b) EV Charging Data tested on 12th December and
22nd June 2022

Figure 5.4: EV Charging Data in Scenarios

PV capacity

Based on the free space on the rooftop of Kropman Breda office (orange area in Figure 5.5a), the
PV capacity has a possibility to increase to around 25.2 kW (with factor of 1.49). [1] Figure 5.5
shows the solar profile on 21st March 2022 in the scenario of a doubled PV generation, having
peak power close to 25.2 kW.

(a) Free rooftop space for PV upscale (b) Current and upscaled PV profile

Figure 5.5: PV upscale scheme
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5.2 Controller Evaluation KPIs

The comparison of controllers with different OF and the benefits of scaling up rooftop PV capacity
are based on energy performance KPIss, as described below:

5.2.1 Power Peak Reduction (PPR)

The PPR quantifies the reduction in grid power peak achieved by the controller. A higher value
indicates better performance.

PPR = Pmax,uncontrolled − Pmax,controlled (kW) (5.1)

Where Pmax,uncontrolled is the power peak without controller intervention, and Pmax,controlled is the
power peak with a controller involved.

5.2.2 Self-sufficiency (SS)

Self-sufficiency (SS) represents the percentage of energy consumed covered by local generation.
This value indicates system independence and the degree of match between local demand and
supply. The ideal SS is 100%, reflecting complete independence. A lower solar capacity might
limit the attainable maximum value.

SS =
daily consumption from solar generation (kWh)

daily total consumption (kWh)
(%) (5.2)

5.2.3 Self-consumption (SC)

Self-consumption (SC) is the level of how much solar generation is used locally. This value indicates
whether the solar generation is optimally used and could be used for evaluating the size of the
solar capacity. The ideal value is 100, but it is more interesting when the solar capacity more
closely matches the demand level.

SC =
daily solar generation consumed locally (kWh)

daily total solar generation (kWh)
(%) (5.3)

5.3 Testbed Result Analysis

With collected data from the testbed, the functionality of the controller is validated by examining
testbed reactions and behaviors. This process includes comparing set points from simulation with
the actual charger output current, and investigating the charging efficiency based on the testbed
simulation. Furthermore, the efficiency differences between low and high power charging are
studied. Since the measurement from devices lacks synchronization and possesses varied resolution,
the collected data cannot be compared directly. To compare the power dynamics within the system
loop, the load duration curves (LDCs) of the charging sessions are built to enable the later efficiency
analysis.

Load Duration Curve (LDC) is a load curve with data points in descending order. This project
uses it to help synchronize data points for the calculation of charging efficiency. Therefore, in this
case, the x and y axes represent data points and charging power, respectively. The step of building
the LDC is illustrated in Figure 5.6.

To create the LDC at charger input/output and battery input, their load curves are required.
Since the direct measurement of charger input/output power isn’t feasible, their values are calcu-
lated as follows:

Pgrid,ev2 =
3× Vac(LN),avg × Iac,avg × PF

1000
(kW) (5.4)
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Figure 5.6: Steps of building LDC for the charging process

Pcharging =
Vdc × Idc
1000

(kW) (5.5)

Pcharged =
Pout,global

1000
(kW) (5.6)

After reordering the load curves in a descending manner, Pcharged can be resampled to match
the 144 data points of Pcharging and Pgrid,ev2 in terms of time.

With the power data, charger efficiency and overall charging efficiency (between the grid and
battery) are calculated as follows:

ηcharger =
Pcharging

Pgrid,ev2
(%) (5.7)

ηoverall =
Pcharged

Pgrid,ev2
(%) (5.8)
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Chapter 6

Results and Discussions

This chapter presents the simulation and testbed results. The first part focuses on the outcomes of
controlled charging and the performance in different scenarios.The second part shows the testbed
testing result with analysis following the steps mentioned in the previous chapter. The full result
of individual charging curves in different scenarios can be found in the Appendix B.

6.1 Controlled Charging Simulation

Load Shifting and Peak Shaving

With the controller, the EVs are charged in a coordinated manner as shown in Figure 6.1, in
comparison to the uncontrolled charging scheme. The according system profiles are shown in
Figure 6.2, illustrating that the controller ensures the aggregated charging load better aligns with
the solar production pattern and leads to a flatter grid power profile. Same result can also be seen
in the simulation on 22nd June 2022, presented in Figure 6.3.

(a) Uncontrolled

(b) Controlled

Figure 6.1: Charging Schedule under Controlled and Uncontrolled Charging

KPIs Evaluations

The utilization of defined KPIs enables a comparative assessment of system performance. Table
6.1, where the KPIs values are summarized, provides an avenue for contrasting various scenarios.
It allows comparisons across seasons, levels of PV capacity, and the proposed control strategies.
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(a) Charging Load

(b) Grid Power

Figure 6.2: System profile results on 12th December 2022

(a) Charging Load

(b) Grid Power

Figure 6.3: System profile results on 22nd June 2022

The results indicate that all proposed control strategies exhibit positive attributes, including
improved PPR, reduced energy costs, and enhanced SS. Notably, the OF2 strategy showcases
slightly superior KPIs scores. This can be attributed to the less constraints on the individual
charging profiles within OF2, allowing the optimization process to focus on the power peak and
cost performance.
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Table 6.1: Scenario Comparison

Scenarios Control Strategy PPR (kW) PPR (%)
Energy Cost
(Euros/day) SS (%) SC (%)

December

Uncontrolled - - 126,025 11,953 100,000
Controlled (OF0) 4,528 11,122 119,955 12,274 100,000
Controlled (OF1) 4,528 11,122 119,810 12,274 100,000
Controlled (OF2) 8,822 21,668 120,090 12,274 100,000

June
Uncontrolled - - 39,237 38,845 94,462

Controlled (OF2) 14,266 42,177 31,423 40,481 94,796

June with
Upscaled PV

Uncontrolled - - 19,759 61,169 80,950
Controlled (OF2) 15,424 50,254 12,899 73,532 93,666

March

Uncontrolled - - 54,775 25,028 100,000
Controlled (OF0) 6,173 15,105 52,791 25,086 100,000
Controlled (OF1) 5,976 14,623 52,949 25,086 100,000
Controlled (OF2) 6,173 15,105 52,784 25,086 100,000

March with
Upscaled PV

Uncontrolled - - 36,550 51,037 97,106
Controlled (OF1) 8,944 25,563 34,646 52,664 99,971

PV Upscaled Scenarios

While augmenting photovoltaic (PV) capacity stands as a potential strategy to mitigate grid
power demand and elevate SS, the adaptation of controlled charging is still necessary to ensure
the optimal use of the increased solar generation. This can be observed when comparing the grid
usage shown in Figure 6.4. Using controlled charging results in a smoother power usage pattern
and better use of solar energy, compared to just adding more solar panels. This is also shown in
Figure 6.5, where presents how the controlled charging system optimizes power use from the solar
panels.

In short, according to the data in Table 6.1, using a smart controller with the available rooftop
space improves system performance. However, it is necessary to note that the optimal PV install-
ation capacity requires further investigation in different seasons and weather conditions to avoid
oversizing.

Figure 6.4: Gird Power Reduction with Upscaled PV Capacity on 22nd June 2022

Charging Curves

This section looks into the charging curves from the controlled strategies with various OFs. For the
result on 21st March, OF0 works better than OF1 in terms of grid power reduction and stability.
However, in the case of December (Figure 6.6), OF1 leads to a smoother charging curve while
maintaining the same PPR as OF0. This inconsistency in performance could be due to the value
set for the parameter Weight, which is determined through trial and error based on a certain
dataset. It could also indicate that OF1 is not robust enough to handle a wide range of scenarios.
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(a) Power from PV with current PV installation

(b) Power from PV with upscaled PV capacity

Figure 6.5: Comparison of SC in scenarios on 22nd June 2022

However, when comparing the results to those from OF2, both OF0 and OF1 manage to avoid
lower charging power (lower efficiency), although the energy performance of the system is slightly
sacrificed. The decision of which OF is a better practice in real cases requires further investigation,
particularly it can depend on different definitions of good charging curves under different cases.

Figure 6.6: Simulated Charging Schedule on 12th December 2022

Figure 6.7: Simulated Charging Schedule on 21st March 2022
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6.2 Testbed Results

Next, the results of the testbed simulation will be discussed.

6.2.1 Charger Performance

Figure 6.8 illustrates how the charger reacts to the set points sent from the controller. (More
results in other scenarios can be found in Appendix C Figure C.1) The figure demonstrates that
the charger closely follows the set points, with an error mostly within 2%.

Figure 6.8: Current Error between Set Point and Charger Output

6.2.2 Testbed Efficiency

Load Duration Curves

Following the process described in Chapter 5, the load duration curves are obtained as Figure 6.9.
Full results in other scenarios can be found in Appendix C.

Efficiency Calculation and Segmentation

Due to mismatch caused by resampling, efficiency calculations are performed based on segments.
The LDC are divided into segments: high-power charging, low-power charging, middle-power
charging, and not charging, as indicated in Figure 6.9.

The high-power charging segment pertains to the moment charging with maximum current,
while the low-power charging segment corresponds to instances of minimum power charging. The
middle-power charging segment represents cases when the charging power falls in between. It’s
important to note that efficiency is only calculated for high and low power charging segments, as
data points in the middle-power charging segment are not perfectly matched due to the resampling
process. The nonzero measurements in the no charging segments might be due to the power
requirements for system operation.

Efficiency Calculation Results

Based on Equation 5.7 and 5.8, the average overall and charger efficiency of the considered segments
are calculated and summarized in Table 6.2. Noted that the overall efficiency in this context does
not account for battery efficiency, only indicates the efficiency between the grid input and battery
input.

It’s observed that the overall efficiency of the testbed is higher than the literature reference
[8], which is taken as the assumption in the optimization model. The higher efficiency could be
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(a)

(b)

Figure 6.9: Load Duration Curves and Efficiency

attributed to the simple charger module setup, where no EV-EVSE interface is involved. When
comparing the efficiency under different charging power, the results presents that a higher charging
power (7 kW) demonstrates a better efficiency by around 4% comparing with charging at the lower
power (around 2 kW). Such analysis allows evaluation of the overall charging efficiency of different
charging curves.

Scenarios Average values
High power segment Low power segment

March December March December

Uncontrolled
Power 7,031 kW 7,036 kW - -

Charger eff 99,441% 99,598% - -
Overall eff 97.871% 97.956% - -

Controlled
with OF2

Power 7,037 kW 7,035 kW 2.085 kW 2.097 kW
Charger eff 99.358% 99.791% 95.856% 96.353%
Overall eff 97.792% 98.110% 93.497% 93.573%

Table 6.2: Charging Power and Efficiency
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Chapter 7

Conclusions and future
recommendation

7.1 Conclusions

Recapping the objectives outlined in Chapter 1, the conclusion is drawn based on the four expected
results from this project.

An Improved Controller Integrated with the Testbed

The Python-based smart charging controller, rooted in the principles of MPC and an optimization
model, has undergone further refinement and successful integration with hardware. The modified
controller can either operate in standalone mode for pure simulation with output of the charging
schedules for all the EVs present throughout the day, or in testbed mode to emulate one of the
charging sessions for on a Hardware-in-the-Loop (HIL) testbed. The controller’s MPC implement-
ation has been completed, with dynamic price curves and a modified efficiency model applied in the
optimization. In addition, the communication interface is integrated in the controller. Moreover,
two alternative objective functions for the optimization model have been proposed and compared.
The first incorporates the Charging Current Difference term (Idifft,i), which is used to smoothen
the charging curve. The second one focuses solely on the system performance, considering only
energy cost and grid power in the optimization process.

Performance of the Modified Controller based on Simulation

Simulation of the modified controller has been carried out to generate charging schedules and
system power profiles in various scenarios. The results showcase the controller’s ability to shift
charging loads for improved energy system performance. Both proposed objective functions in the
controller lead to a reduction in peak power demand from the grid, decreased overall energy cost,
and enhancements in self-sufficiency and self-consumption metrics. Moreover, the simulation with
a higher PV capacity emphasizes the advantage of controlled charging strategy for better system
performance. While the definitive choice of the optimal objective function remains challenging
within the scope of this assignment, the simulation results offer insights for future refinements.
It is apparent that both objective functions with the penalty term and the Charging Current
Difference term could be enhanced in terms of the generalizability and robustness. Otherwise,
striking the right balance between curve smoothness and the overall charging efficiency under the
particular scenarios and system constraint is required for determining the suitability.
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A HIL Testbed Able to Mimic an EV Charging Session

The development of a HIL testbed capable of mimicking an EV charging session has been accom-
plished. This grid connected testbed comprises a host computer, a charger module, and a battery
emulator. The controller, operating on the host computer, facilitates bi-directional communication
with the charger using the CANopen protocol and the battery emulator via Modbus. Measured
data returned from these devices and interfaces allows monitoring and analysis of charging sessions
and system dynamics. In this assignment, the smart charging controller was tested on the testbed,
by emulating one of the EV charging sessions. The controller sends a set charging current to the
charger upon initiation of the emulated EV’s charging session, controlling the power flowing to
the battery. The battery emulator reacts in accordance with the predefined battery model.

Realtime Emulating Results Using the Testbed

Following simulations and testing on the HIL testbed, it has been demonstrated that the control-
ler can offer an improved charging schedule through the utilization of MPC and the optimization
model. The testing result reveals that the system achieves the goal of performing a controlled
charging session as simulation. The measurement from the HIL testbed shows that the charger
successfully follows the setpoint provided by the controller, with errors primarily within 2%. In-
vestigation of charging efficiency has been undertaken through load duration curves of the devices
to address the unsynchronized measurements. The charging efficiency on the testbed is higher than
the literature reference, with an overall charging efficiency around 97% charging at high power
(approximately 7 kW) and the charger efficiency exceeding 99%.This high efficiency can be attrib-
uted to the simplified system setup compared to a real-world scenario. Furthermore, charging at a
lower power (around 2kW) leads to an approximately 4-5% lower efficiency compared to the high
power scenarios. The analysis method could be applied to evaluate the efficiency performance of
charging curves, allowing further investigation on the design of the optimization model.

7.2 Future Work and Recommendations

Objective Function

As highlighted, future investigations could delve into refining the optimization model, particularly
regarding the objective function. While all proposed objective functions achieve the objective of
shifting charging loads from morning to afternoon, enhancing their generalizability and robustness
is imperative. One possible solution is applying Objective Function 2 (OF2) with charging power
level and charging curve smoothness as soft constraints instead of direct objectives. Achieving
this might necessitate a multi-objective or even integer programming optimization model. Due to
time constraints, this solution is not implemented, though this step could be crucial, especially
when bi-directional charging is involved.

Testing with EV-EVSE Interface and Real Car

With the development of the testbed, the controller can have another testing after the EV-EVSE
interface is integrated to the system (which is now being implemented by another student). Fur-
thermore, with the system able to connect to a real charger downstairs of the lab, a testing in a
real system can be conducted, which would allow for deeper examination of efficiency and energy
delivery.

Bidirectional Charging

Given the current limitations of the solver, the controller currently accommodates only one-
directional charging. Realizing the final project objective of implementing bidirectional charging
would be a focal point for the next student involved. Given the testbed’s capacity for bi-directional
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charging, testing with adjusted system configurations or controller design could be undertaken to
accelerate the achievement of this objective.

7.3 Self Assessment

Participating in a project that combines software development and hardware implementation has
been a rewarding journey, where I gained skills from various angles. On the software front, under-
standing others’ code and building upon it are challenging. Making sense of the previously built
controller took me a long time and a big effort. The challenge is that it is not easy to understand
the purpose and logic behind each line of the code while also keeping questioning myself if this
makes sense or is there a better way to do it? In addition, making modification in the controller is
another challenge. Deciding between coming up with a solution to fit into the existing system or
redoing part of the existing code for easier integration of a new feature is always not easy. There
are many tries and errors throughout the process, but it is proven that everything encountered on
the way is meaningful. ”Trust the process” is the mindset I built on the way.

Same as working with hardware, which is also challenging but brings excitement from time to
time. Shooting the bugs to make things work as expected is usually not just a few clicks – it’s
like going on an adventure, sometimes with a map, but it needs determination and perseverance.
In addition, the testing process also makes me realize the importance of better planning for data
flow and management, as they can have a huge influence on the efficiency and accessibility in the
later process and future maintenance. For me, this opportunity to access such a testbed is valuable.

Finally, out of the technical objectives, this collaborative project developed my ability to work
on an academic project in a professional setting. Learning how to be more communicative, precise,
and straight forward as the people here brings my communication skill to another level, which I
believe would be extremely crucial for my later career.
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[11] Franc Mihalič, Mitja Truntič, and Alenka Hren. Hardware-in-the-Loop Simulations: A His-
torical Overview of Engineering Challenges. Electronics, 11(15):2462, January 2022. Number:
15 Publisher: Multidisciplinary Digital Publishing Institute. 4

[12] M. D. Omar Faruque, Thomas Strasser, Georg Lauss, Vahid Jalili-Marandi, Paul Forsyth,
Christian Dufour, Venkata Dinavahi, Antonello Monti, Panos Kotsampopoulos, Juan A. Mar-
tinez, Kai Strunz, Maryam Saeedifard, Xiaoyu Wang, David Shearer, and Mario Paolone.
Real-Time Simulation Technologies for Power Systems Design, Testing, and Analysis. IEEE
Power and Energy Technology Systems Journal, 2(2):63–73, June 2015. Conference Name:
IEEE Power and Energy Technology Systems Journal. 5

Hardware-in-the-Loop Testing for Smart Charging Controller Development 31



BIBLIOGRAPHY BIBLIOGRAPHY

[13] Andres Alonso Rodriguez, Luis Perdomo, Ameena Al-sumaiti, Francisco Santamaria, and
Sergio Rivera. Management of Electric Vehicles Using Automatic Learning Algorithms:
Application in Office Buildings. In Smart Charging Solutions for Hybrid and Elec-
tric Vehicles, pages 143–157. John Wiley & Sons, Ltd, 2022. Section: 5 eprint: ht-
tps://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119771739.ch5. 3

[14] Omid Sadeghian, Arman Oshnoei, Behnam Mohammadi-ivatloo, Vahid Vahidinasab, and
Amjad Anvari-Moghaddam. A comprehensive review on electric vehicles smart charging:
Solutions, strategies, technologies, and challenges. Journal of Energy Storage, 54:105241,
October 2022. 2, 3

[15] Bikash Sah and Praveen Kumar. Smart Charging: An Outlook Towards its Role and Im-
pacts, Enablers, Markets, and the Global Energy System. In Smart Charging Solutions for
Hybrid and Electric Vehicles, pages 1–38. John Wiley & Sons, Ltd, 2022. Section: 1 eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119771739.ch1. 3

[16] Chandana Sasidharan and Shweta Kalia. Smart Charging Strategies for the
Changing Grid. In Smart Charging Solutions for Hybrid and Electric Vehicles,
pages 83–103. John Wiley & Sons, Ltd, 2022. Section: 3 eprint: ht-
tps://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119771739.ch3. 3

[17] W. Somers. Forecasting Individual and Aggregated Electric Vehicle Charging Loads at Offices
with Machine Learning. Master’s thesis, 7LS2M0-Master project Research B, 2022. 11

[18] Stijn Vandael, Bert Claessens, Maarten Hommelberg, Tom Holvoet, and Geert Deconinck.
A Scalable Three-Step Approach for Demand Side Management of Plug-in Hybrid Vehicles.
IEEE Transactions on Smart Grid, 4(2):720–728, June 2013. Conference Name: IEEE Trans-
actions on Smart Grid. 3

[19] Annette von Jouanne, Emmanuel Agamloh, and Alex Yokochi. Power Hardware-in-the-
Loop (PHIL): A Review to Advance Smart Inverter-Based Grid-Edge Solutions. Energies,
16(2):916, January 2023. Number: 2 Publisher: Multidisciplinary Digital Publishing Insti-
tute. 4

[20] Junsheng Zhang. Hardware-in-the-Loop Simulation of EV Smart Charging in a Distribution
Grid. 2022. 4, 11, 16

32 Hardware-in-the-Loop Testing for Smart Charging Controller Development



Appendix A

Hardware Interfaces

Figure A.1: Power meter monitoring with Matlab interface

Figure A.2: Controller terminal
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Figure A.3: Monitoring Interface of the Battery Emulator

Figure A.4: Charger module interface
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Appendix B

Simulation Results

(a)

(b)

Figure B.1: System profile with upscaled PV capacity on 21st March 2022
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(a)

(b)

(c)

(d)

Figure B.2: System profile with different control strategies on 21st March 2022
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(a)

(b)

(c)

(d)

Figure B.3: Uncontrolled and controlled system profile in scenarios on 22st June 2022
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(a)

(b)

(c)

(d)

Figure B.4: System profile with different control strategies on 12nd December 2022
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Appendix C

Testbed Results

(a)

(b)

(c)

Figure C.1: Current Error
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(a)

(b)

Figure C.2: Load Duration Curves and Efficiency in Scenarios
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