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SAMENVATTING

Brains for Buildings Energy Systems (B4B) is een meerjarig project met meerdere belanghebbenden dat tot
doel heeft om slimme bouwmethoden te ontwikkelen om de activiteiten in gebouwen energie-efficiénter te
maken, om flexibel energieverbruik mogelijk te maken, om comfort te verhogen van de ge-bruikers en om
installatietechnisch onderhoud slimmer te maken. Dit wordt bereikt door snellere en ef-ficiéntere modellen en
algoritmen voor Machine Learning en Artificial Intelligence te ontwikkelen. Het pro-ject is afgestemd op
bestaande utiliteitsbouw.

Vijf werkpakketten in dit project zijn gewijd aan bovenstaande taken. Dit rapport is een uitkomst van het
Werkpakket 4 (WP 4) van het B4B-project, met als thema "Data Integratie". Er zijn veel heterogene
gegevensbronnen in gebouwen, b.v. sensorgegevens, 3D-modelgegevens, tijdschema's, gegevens van be-
woners, gegevens over systeemonderhoud, gegevens van elektrische systemen, enz. Hun gegevenstypen,
naamgevingsconventies en formaten zijn heel verschillend van gebouw tot gebouw, waardoor het moeilijk is
om deze gegevens te gebruiken voor het ontwikkelen van gestandaardiseerde rekenmodellen en algo-ritmen.
Gegevensbronnen of systemen communiceren bovendien met verschillende protocollen en wis-selen
gegevens uit in verschillende formaten en standaarden. Daarom zijn deze gegevens vaak enkel beschikbaar
in silo's. Ze zijn niet beschikbaar via één platform, waardoor er weinig tot geen interactie of koppeling of
gezamenlijk gebruik is van meerderede dergelijke silo’s. WP4 heeft tot doel methoden te ontwikkelen om deze
gegevenssilo's te integreren voor het ontwikkelen van modellen en algoritmen voor machine learning en
kunstmatige intelligentie, terwijl ook privacy en ethiek worden gegarandeerd bij het verzamelen, opslaan,
integreren, delen, beheren of gebruiken van gegevens in slimme gebouwen.

Deze deliverable "D.4.06 Reference Architecture for smart buildings" rapporteert de resultaten van taak
T4.2.1: Ontwikkeling van een referentiesysteemarchitectuur en een reeks gegevensstroomprocedures en taak
T4.3.1: Ontwikkeling en uitrollen van voorgestelde systeemarchitectuur en -aanpak voor data integratie in
meerdere testomgevingen en field labs. De studie begint met het verkennen van de state-of-the-art
referentiearchitecturen en systeemarchitecturen met betrekking tot smart buildings. Vervolgens worden
stakeholders geidentificeerd om onderzoek te doen naar hun vereisten rond data integratie in smart buildings.
Deze vereisten worden gedefinieerd in een reeks functionele vereisten om daarmee een referentie-
architectuur te ontwerpen. De studie stelt een systeemarchitectuur voor met vijf lagen, gebaseerd op
microservices. De geidentificeerde functionele vereisten worden geimplementeerd met behulp van deze
verschillende microservices. De vijf lagen van de architectuur bestaan uit Databronnen, Data-integratie,
Databeheer, Applicatie-logica en Visualisatie, in overeenstemming met state-of-the-art ontwikkeling.

De algemene idee van de voorgestelde systeemarchitectuur is om communicatie van verschillende
gegevenstypen mogelijk te maken met data-gestuurde toepassingen in slimme gebouwen. De voorgestelde
micro-services om deze communicatie te bereiken, zijn: i) drivers voor het verkrijgen van gegevens van
gebouwautomatiseringssystemen, metadatabronnen en externe dataservices (e.g. weerdata), en
nutsvoorzieningen, ii) real-time berichtendiensten, iii) databanken die geschikt zijn voor verschillende
gegevenstypes, iv) Application Programming Interfaces (API) voor datacommunicatie, iv) verschillende smart
building toepassingen en v) front-end applicaties die fungeren als visualisatietools. Aan het einde van het
rapport worden verschillende voorbeeldimplementaties van smart building-toepassingen gepresenteerd als
een demonstratie van de voorgestelde referentiearchitectuur.
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SUMMARY

Brains for Buildings Energy Systems (B4B) is a multi-year, multi-stakeholder project that aims to develop smart
building methods to enhance operations in buildings by reducing energy consumption, increasing energy
flexibility, increasing occupant comfort, and improving installation maintenance costs. This will be achieved by
developing faster and more efficient Machine Learning and Artificial Intelligence models and algorithms. The
project is geared towards existing utility buildings, such as commercial and institutional buildings.

There are five work packages in this project dedicated to the above tasks. This report is an outcome of Work
Package 4 (WP 4) of the B4B project. WP4 works under “Data integration” theme. There are many
heterogeneous data sources in buildings, e.g., sensor data, 3D model data, time schedules, occupant data,
asset maintenance data, electrical system data, etc. Their data types, naming conventions and formats differ,
making it difficult to use these data for developing models and algorithms. Data sources or systems
communicate using different protocols and exchange data in different formats and standards. Therefore, these
data are often siloed, they are not available via a single platform, meaning there is little to no interaction
between them. WP4 aims to develop methods to integrate these data silos for developing Machine Learning
and Artificial Intelligence models and algorithms while guaranteeing privacy and ethics when collecting,
storing, integrating, sharing, managing or utilizing data in smart buildings.

This deliverable, “D.4.06 Reference Architecture for smart buildings,” reports the outcomes of task 74.2.1:
Development of a reference system architecture and set of data flow procedures and T4.3.1: Development
and roll-out of proposed reference system architecture and data integration methods in multiple test
environments and field labs. The study explores the state-of-the-art reference architectures and system
architectures related to the smart building domain. Then it continues to identify the stakeholders involved in
a smart building to gather the requirements of each. These requirements are then defined into functional
requirements to design a reference architecture.

The study proposes a five-layer microservice-based architecture, where the identified functional requirements
are implemented using various microservices. Five layers of the architecture consist of Data sources, Data
integration, Data management, Application logic and the visualization layers. The overall idea of the proposed
system architecture is to enable communication of various data types with data-driven applications in smart
buildings. Proposed microservices to achieve this communication includes i) drivers for acquiring data from
building automation systems, metadata sources and external data services such as weather and utility, ii) real-
time message services, iii) databases suitable for different data types, iv) Application Programming Interfaces
(API) for data communication, iv) various smart building applications and v) front-end applications that act as
visualization tools. At the end of the report, several example implementations of smart building applications
are presented as a demonstration of the proposed reference architecture.
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1 INTRODUCTION

1.1 Smart building systems

Smart buildings are complex systems that combine many systems, including Building Automation Systems
(BAS), loT devices, user preferences, and analytics. With the rise of the Internet of Things (loT) and cloud
computing, smart buildings have become more sophisticated, with a vast array of connected devices and
systems that need to communicate and exchange information. Advanced algorithms based on Machine
Learning (ML) and advanced controls such as Model Predictive Control (MPC) can now optimize building
operations based on building data and connectivity.

A smart building includes components from several different domains, such as building automation,
information technology, communication networks and user interfaces. Some key components of a smart
building include:

1. Building Automation System (BAS): A centralized system for monitoring and controlling building
systems such as HVAC, lighting, and security.

2. loT Devices: Various sensors, actuators, and other devices for monitoring and controlling building
systems, such as temperature sensors, motion sensors, and lighting controllers.

3. Realtime Communication: A low-latency, high-bandwidth communication network and network
infrastructure for real-time data exchange between the various components of the smart building
system, such as Wi-Fi, Ethernet, and cellular networks. The real-time communication component is
particularly important for ensuring that the smart building system can respond quickly to changes in
the environment and building systems and make decisions based on real-time data.

4. Data Management: A system for collecting, storing, and analyzing data from the loT devices and BAS,
such as databases and data analytics platforms.

5. Metadata Management: A system for collecting, storing, and integrating metadata from multiple
systems.

6. Data Integration: A set of APIs and protocols for integrating with other systems, such as building
management systems, data analytics services, weather services, etc.

7. Analytics: Various rule-based and optimization-based control strategies are executed in buildings to
achieve operational objectives related to energy efficiency, comfort and indoor environment.

8. User Interfaces: A set of user-friendly interfaces for monitoring and controlling the building systems,
such as mobile apps, web applications, and screens.

9. Security: A comprehensive security solution for protecting the smart building system from cyber
threats, such as firewalls, encryption, and access controls.

The complexity of smart buildings as a cyber-physical system stem from the large number of interdependent
systems and technologies mentioned above, each with their own data, algorithms, and communication
protocols, that must work together to achieve the desired outcomes, such as energy efficiency, user comfort,
and safety. A well-designed system architecture can help to manage this complexity, ensuring the efficient and
effective integration of necessary components, and ultimately delivering a building that operates at its best
and meets the needs of all stakeholders involved.

1.2 Reference architecture for smart buildings

Given the diversity of the available building stock, system vendors, technologies, and operational objectives of
buildings, developing a system architecture that suits all scenarios is not possible. Here, the architectural
blueprints of the system architecture (reference architecture) can support the creation of suitable instances
of systems by introducing reusable knowledge and best practices. The main purpose of a reference
architecture is to provide (i) re-usability, (ii) best practices, (iii) abstraction levels, and (iv) serve a set of use
cases [1]. A reference architecture is a standardized, reusable set of guidelines, tools, and practices for
designing and building a specific solution or system [1]. It provides a blueprint for the solution’s design,
development, and deployment and is intended to help organizations achieve a consistent, high-quality
outcome.

A lot of buildings are becoming data-driven and there is a need to integrate different data sets from multiple
sources, train and run control algorithms based on the collected data. These applications need to be modular
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and portable to increase their usability between different technologies and buildings [2], [3] and therefore
modularity is important. A reference architecture therefore can aid the design and deployment of systems with
such requirements [4]. A reference architecture can help reduce the cost, time, and risk associated with
developing and deploying new systems in smart buildings.

A reference architecture can provide a smart building with,

1.

Clarity: provides a clear and consistent framework for designing, deploying, and managing smart
building systems[5]. This can help to ensure that the building systems are aligned with the overall
goals and objectives of the building.

Interoperability and data integration: ensure that the various components and systems of the smart
building can work together seamlessly and effectively. This includes integrating different building
systems (such as HVAC, lighting), external services (like weather and grid) with control algorithms for
smart building applications such as FDD and MPC [6].

Security, privacy and ethical usage of data: ensure that the smart building systems are secure and
protected from cyber threats, such as hacking and data breaches. This includes implementing
appropriate security measures, such as firewalls, encryption, and access controls, as well as ensuring
that privacy concerns are addressed throughout the system architecture to handle sensitive
information.

Cost and efficiency: optimize the costs[7] and efficiency of deploying the smart building systems by
reducing the risk of compatibility issues and improving the overall performance and reliability of the
building systems.

Flexibility and adaptability: provides an overview of the components and their interactions with each
other to design flexible and adaptable solutions. Since changes and upgrades to the building systems
and control algorithms are inevitable over time, this overview helps to ensure that the building systems
can evolve and grow as needed, while still maintaining compatibility with the overall architecture.

www.brainsforbuildings.org 7/35
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2 STATE-OF-THE-ART REFERENCE ARCHITECTURES

In the early 2000s, the rise of the internet! and the rapid advancement of technology spurred the increasing
importance of reference architectures in different domains such as loT [8], Industrial loT (lloT) [1],
manufacturing technology, autonomous systems, and smart buildings [4], [5], [9], [10]. These architectures
were utilized to assist companies in the design and implementation of complex software systems such as
enterprise resource planning (ERP) systems, service-oriented architectures (SOAs), and cloud computing.
Reference architectures are extensively applied across several industries, including healthcare, finance, and
smart buildings. They provide a standard framework for designing and implementing complex systems and are
continuously evolving and adapting to new technologies and challenges. Four such domains and reference
architectures in those domains are discussed in the following sections.

2.1 Smart buildings domain

MATRYCS? [11], [12] is a reference architecture designed for the building domain to enable the
implementation of advanced services using big data. Main components of the architecture are, data sources,
data governance, data processing, and analytics, as shown in Figure 1. The data sources layer implements
various edge data connectors to collect data from various sources, including sensors, building management
systems, and weather services. The governance layer handles the streaming services, semantic services, data
storage and querying. The processing layer implements data analytics tools suitable for model development,
model evaluation and other Machine Learning tasks. Finally, the analytics toolbox provides advanced services,
such as predictive maintenance, energy management, and indoor environmental quality analysis, by utilizing
the processed and stored data. The MATRYCS architecture is intended to provide a standardized and scalable
framework for developing advanced services in the building domain, particularly for ML-based applications.

KNOWLEDGE

INFORMATION

ENRICHED DATA

RAW DATA

Figure 1 High level MATRYCS architecture with four layers transforming raw data to knowledge[12][12]

A detailed view of the proposed architecture and possible open source components for implementing a system
is proposed by the MATRYCS project, and is shown in Figure 2. In each layer, software frameworks, databases
and software libraries are proposed, which can be used in the instantiation of the reference architecture.

1 https://www.britannica.com/technology/Internet/Foundation-of-the-Internet
2 https://www.matrycs.eu/sites/default/files/2021-06/MATRYCS%20D2.2%20-
%20Technical%20%26%20Security%20Specification_v1.0%20%282%29.pdf
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2.2 Manufacturing domain

The Boost4.0 Reference Architecture (RA)3 is built with big data in manufacturing in mind. The architecture is
composed of five horizontal layers that group various components. The integration layer facilitates the
management of external data sources, infrastructure, and data ingestion. The horizontal layers are
complemented by cross-cutting aspects represented in vertical components, such as communication, data
sharing platforms, development, engineering, and DevOps, standards and, cybersecurity and trust. The
‘Information and Core Big Data’ layer consists of components responsible for data management, processing,
analytics, and visualization. The Application layer implements application logic that supports specific business
functionalities and exposes the functionality of lower layers through appropriate services. The Business layer
forms the overall manufacturing business solution in the Boost4.0 project. The factory dimension (y-axis)
indicates how physical entities are involved in the reference architecture.

RAMI4.0: The Factory

53 Consumers
|

==
SE
o0
Connected world a g Collaborative
= 1| Analytics Service
= o
S w Marketplace
o £
g il raciitates access to Application Layer
3 Open Data Model
p ) %.,5 (0DM), Data Use-case-specific logic, business process support, services
nterprise sl =l|  Areas (DSA), and Data
3 g Information & Core Big Data Layers
(DAS) Data Visualization Data analytics
IAn i Processors 10,20, 30, 4D, VR/AR Descriptive, Diagnostic. Predictve, Prescriptive
Workcentre 2:: processing architectures
oo @ beractive, Streaming/Meakime
= @ § Data management
fie o2 Soteton Pgerston Ot g
Station ‘3‘ % Integration Layer
2 g Facilitates access to external data es/infr and data

é»
Devices | I

> Producers
L[] .
Product Manufacturing
entities
Figure 3 BOOST 4.0 Reference Architecture[14]
2.3 lloT systems domain

The IIRA Reference architecture? is built with 1loT systems in mind. This reference architecture utilizes the
ISO/IEC/IEEE 420105 architecture description specification® as its architecture framework and employs
stakeholders, their concerns and viewpoints (business view, usage view, functional view, and implementation
view) as its architecture representation to describe and analyze important common architecture concerns for
IloT systems. It focuses on architectural concerns commonly found in lloT systems and categorizes them into
viewpoints with their respective stakeholders. The IIRA models are chosen to address concerns at an
appropriate level of abstraction which can be used as a starting point for concrete architectures and can be
extended and enriched based on specific system requirements. System architects can use IIRA as a base
framework to develop their concrete architecture.

ISO/IEC/IEEE 42010 is intended for use by software architects, stakeholders, and anyone involved in the
development or evaluation of software, systems, or enterprises. It is applicable to a wide range of systems,
including those in the domains of information technology, manufacturing, transportation, healthcare, and
defense. The ISO/IEC/IEEE 42010 standard emphasizes the importance of considering multiple viewpoints

8 https://boost40.eu/wp-content/uploads/2020/11/D2.5.pdf
4 https://www.iiconsortium.org/wp-content/uploads/sites/2/2022/11/1IRA-v1.10.pdf
5 https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42010:ed-2:v1:en

6 ISO/IEC/IEEE 42010 is an international standard that provides a framework and guidelines for describing the architecture of software, systems,
and enterprises. It defines the terminology, concepts, and constructs that are used in architecture descriptions such as architecture, architecture
description (AD), and architecture description language (ADL), architecture description framework (ADF), and provides a common language and
structure for stakeholders to communicate and understand the architecture of a system.
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when describing architecture and provides guidance on how to develop and use these viewpoints to analyze,
evaluate, and communicate architecture. It also addresses the relationships between architecture and other
system characteristics, such as requirements, design, implementation, and testing.

System Characteristics

S ® & © &
%é@ 00\\, é\\e) _\\,b’o & @‘60
o4 & & -
=
Trustworthiness %
g
Functional Domains o 3 s
AL
g 2|8
1HL
: JHHE
5 5 5 312153
£ = £ 3 5§ a2
& = S = ‘
© - E_ -
= L o %
i) c <
= = g 3 &
3 g v 0-\\0
Control & Monitoring | <<\§\
O

: =
5
O(o

Physical Systems

Figure 4 High-level IIRA Reference Architecture with functional domains, cross-cutting functions and system characteristics

2.4 Autonomous systems domain

Marosi et al. [1] introduces a cloud-agnostic data analytics platform for state-of-the-art autonomous systems.
The platform is built from open-source reusable components and serves as a blueprint for processing and
analyzing structured and unstructured data from loT-based cases. It is based on industry’s best practices and
loT-based data analytics platforms. The authors propose this platform as a baseline for future reference
architectures in autonomous systems. Many components of this architecture are highly relevant to the smart
building analytics domain, such as real-time data ingestion, data storage and real-time analytics. This system
architecture can be considered as a low-level architecture which provides direct guidelines for
implementations using available software components, which can be valuable for instantiating such reference
architectures in real world applications.
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Figure 5 Data analytics platform architecture [1](image used with permission from authors)

2.5 Commercially available smart building system architectures

There are architectures (not necessarily reference architectures) designed and used by companies which are
tailored for smart building requirements. These architectures are low-level and close to implementation with
specifications and Application Programming Interface (APl) documentation. One such commercial system
architecture is Building Information System (BIS)?. The architecture of this system is shown in Figure 6. Here,
the Building Operating System (BOS) consolidates and standardizes building data. At the core of this system
is the digital twin, which serves as the unified and contextualized data model for describing the building's state,
history, and behavior. The BOS itself is the software responsible for managing this digital twin database. BOS
API acts as the singular and secure entry point for all building data, regardless of its source. This API provides
seamless access to the digjtal twin and its associated data, ensuring that different building systems and
applications can easily and reliably interact with each other.

7 https://resourcecenter.en.spinalcom.com/project-resources/the-bos-spinalcore/system-architecture
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Figure 6 BIS System Architecture (image from https.//resourcecenter.en.spinalcom.com/project-resources/the-bos-

spinalcore/system-architecture)

The architecture in Figure 7 is a good example for a high-level architecture used by a commercial company.
This architecture belongs to Cloud Energy Optimizer, a project partner in the Brains for Buildings project. The
idea of this architecture is to communicate the main components in the system, which are, the building, data
connectors, analytics environment and the historical database of building data.

s}
"5

Figure 7 Cloud Energy Optimizer system architecture.
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Figure 8 illustrates the system architecture of Kropman'’s InsiteView8, another partner company in the Brains
for Buildings project. This architecture is detailed with the protocol level interactions with each component in
the system and therefore a low-level system architecture. The diagram shows the interaction and
communication of data between various components such as BAS systems (Priva, Johnson Control), external
serivices (weather, Electric Vehicle charging), databases and ML algorithm development environment. The
InsiteReports Server provides historical data while an MQTT broker provides real-time data acquisition.
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Figure 8 Kropman'’s InsiteView system architecture (image used with permission from Kropman)

2.6 Span of Reference Architectures

Some reference architectures are more abstract and high-level, while others are closer to technical
implementation. Abstract reference architectures typically provide a conceptual overview of the system, its
components, and how they interact with each other. They focus on the system's functional requirements, non-
functional requirements, and the flow of data and control within the system. These types of reference
architectures are often used as a starting point for system design and provide a common language for
stakeholders to communicate and align on the system's vision and goals.

On the other hand, more technical reference architectures provide a detailed description of the system's
technical components, their interfaces, and how they are implemented. These architectures often include
information on the hardware and software used, the protocols used for communication between components,
and the specific services provided by each component. A technical reference architecture is often used by
developers and engineers to build and deploy the system.

Figure 9 shows the reference architectures we discussed above, in a scale of more abstract to low level
detailed architectures.

Abstract and high-level Detailed and low-level
BOOST 4.0 Cloud Energy MATRYCS BIS Marosi et al. [1]
IIRA Optimizer Kropman

Figure 9 Reference architectures with various abstraction levels

8 https://ivs.kropman.nl/insiteview/
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2.7 Summary

Some notable software reference architectures including the MATRYCS-A Big Data Architecture, the BOOST
4.0 Reference Architecture, and the IIRA (Industrial Internet Reference Architecture) were discussed in this
section. Reference architectures are pre-designed solutions that provide a blueprint for building complex
systems. They define a set of standards, guidelines, and best practices for designing, building, and operating
systems in a specific domain. They can help reduce development time and costs, improve system quality, and
facilitate interoperability. It is important to note that reference architectures are not one-size-fits-all solutions
and may require customization to meet specific system requirements and business needs, that in turn imposes
time constraints and hence guides technical choices. Four key features identified from these reference

architectures are:

Developed with a specific domain in mind (such as loT, manufacturing, data analytics)
Have logjcal layers to group similar functionalities

Can be high level (more abstract) or more elaborative (low level)

Implementation is optional

i
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3 DESIGN CONSIDERATIONS

This chapter aims to present the design considerations of the proposed Reference Architecture. We consider
stakeholders and their concerns as an input to derive a set of functional requirements to design the Reference
Architecture. Non-functional requirements of the Reference Architecture are derived using best practices in
software system design.

3.1 Stakeholders and their concerns
There are a few stakeholders who have concerns for smart building systems such as,

e Facility managers,

e Building owners,

e Third party service providers (Building engineers, Software platform developers (e.g. BMS
providers), Original Equipment Manufacturers (OEM)), and,

e Building occupants

A detailed discussion on the various data needs and requirements in smart buildings concerning various
stakeholders (mainly building owners and third-party service providers) is available in our previous deliverable
D4.03 Data Needs and Requirements in Smart Buildings®. However, some of the concerns are described here.
Facility managers, and third-party service providers (Building engineers, Software platform developers) are the
stakeholders that mostly interact with data. One of the primary concerns is extracting data from heterogeneous
systems, which involves collecting data from different sources and making it available for various analytics.
Periodically downloading external data such as weather from external APIs and the ability to upload various
timeseries data sets and contextual data sets in 2D and 3D formats are also important requirements. These
data sets then need to be combined and processed for analysis, which involves tasks such as data cleaning,
pre-processing, and integration. Ultimately, actionable strategies for goals such as energy efficiency must be
created, and analytics results must be executed in controllers and linked to digital twin platforms or
visualization environments for effective monitoring and control. Building owners, on the other hand, are
interested in comparing performance of different buildings in a portfolio and identify energy efficiency
opportunities. For this, they wish to interact with different user interfaces that provide them with the necessary
tools.

Various smart building applications were studied in our previous deliverable ‘D4.03 on Data needs and
requirements in smart buildings’. We identified the five most often encountered smart building applications
as:

Fault detection and diagnostics (FDD)

Occupancy and occupant behaviour prediction

Energy flexibility and Demand Side Management (DSM)
Efficient HVAC control

Facility management and monitoring building performance

arwNRE

In general, all the applications under these categories need data collected from the physical systems via
sensors, perform various data analytics to identify optimum control strategies and perform these strategies
via actuators in the building (Figure 10). These applications consume a large amount of heterogeneous data
and a system architecture should enable efficient means to do so.

® https://brains4buildings.org/wp-content/uploads/2022/05/B4B-WP4-D4.3_Data-Needs-and-Requirements. pdf
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Monitoring,
Data-driven Control

Sensing Actuation

Physical systems

Figure 10 Data flow in smart building applications

Based on the concerns of stakeholders and the nature of smart building applications, a set of functional
requirements are derived. These functions can be categorized into six categories, which are identified as
functional views. These functional views are:

SR N

Data collection

Data management

Data analytics
Communication

Control

Visualization and monitoring

Figure 11 shows the relationship between the stakeholders, functional requirements and functional

views.
Functional view Data collection Data Data analytics Communication Control Vlsualrwzatlon,
management monitoring
A | ¢ ¥ A w e
Functional ‘ FR1 ‘ FR2 ‘ FR3 FR4 FRS FR6 FR7
requirements
- - ¥ R, K w a
Third part
Stakeholders Facility managers Building owners . P _V Occupants
service providers

3.2

Figure 11 Relationship between stakeholders, functional requirements and functional views

Functional requirements

Functional requirements define what the system architecture should do. We derived seven functional
requirements by referring to the concerns from stakeholders as described above, smart building literature [5],
[12], [13], and our own experience in the Brains for Buildings project (living labs).

1.
2.
3.

ook

FR1 - Ingestion of time series data from heterogeneous systems.

FR2 - Gathering, management, and processing of large volumes of time series data.

FR3 - Gathering, management, and processing of contextual information (metadata) from
various data sources.

FR4 - Integrating metadata with the operational data of various devices in a building.

FR5 - Interoperability among the several existing devices, services, and applications.

FR6 - Real-time or near real-time bi-directional communication ability and the ability to
autonomously control facilities within the building.

FR7 - User-centered interfaces for easy data access.
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3.3 Non-functional requirements

Non-functional requirements are characteristics or qualities that a system or software must possess, but are
not directly related to the system's functionality. Non-functional requirements define the system's overall
behavior, performance, and quality attributes and are essential to ensure that a system is reliable, secure, and
efficient in performing its intended functions identified under functional requirements. We derived seven non-
functional requirements based on the literature [12] and our own experience in Brains for Buildings project
(living labs).

NFR1 - Modularity

NFR2 - System availability (load time)
NFR3 - Efficiency (speed and performance)
NFR4 - Interoperability

NFR5 - Security

NFR6 - Usability

NFR7 - Scalability and extensibility

NoOOA~WNE

Modularity: The ability of the smart building system architecture to be broken down into separate,
independent modules that can be developed, tested, and maintained separately. This helps to ensure
that changes or updates to one module do not affect the entire system. Modularity also has an impact on
scalability and extensibility of the system.

System availability: Refers to the ability of the smart building system architecture to remain operational
and accessible to users over time. This includes factors such as uptime, system response times, and fault
tolerance.

Efficiency: Designed to use resources (such as power and processing) in an optimal way. This can include
considerations such as load balancing, data compression, and energy-efficient hardware.

Interoperability: Designed to work seamlessly with other systems and technologies, both within and
outside the building. This can include protocols and standards that enable interoperability, as well as APIs
for integrating with other systems.

Security: Designed with strong security measures to protect against unauthorized access, data breaches,
and other cyber threats. This can include encryption, authentication, and access control mechanisms.

Usability: Designed to be easy to use and understand for building occupants, maintenance staff, and
other stakeholders. This can include intuitive user interfaces, clear documentation, and training
resources.

Scalability and extensibility: Designed to support growth and expansion over time, including the addition
of new features, systems, or technologies. This can include strategies such as modular design, flexible
data structures, and support for open standards
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4 REFERENCE ARCHITECTURE

This chapter of the report outlines the proposed system architecture, which comprises five layers: Data
Sources, Data Integration, Data Management, Application Logic, and Visualization. Figure 12 shows a block
diagram of the proposed system architecture. Functional requirements (FR) under each functional domain are
realized within suitable layers of this architecture using microservices.

Devices and systems External services Metadata sources

BAS Battery i .
Data Sources - storage || Weather| |Utility
L‘EI.VEI’ [oT devices Lighting/ Plug| | HVAC
- = : Other
loads controller| ;

Zigbee BACnet HTTP
Z-wave Modbus
Tuya

l J 1 2 !
{ | IoT Driver ~ BMS Driver, External Data Driver Metadata Driver
, | MQTT i P
Integratlon ! Q J | Pre-processor . Pre-processor :
: ¥ \ 4
Message Broker — Rl nme_ -
i message service
: A
MQTT .
B Timeseries Blob data Semantic
data Graph (RDF)
Data Layer T
HTTP HTTP SPARQL
A h ¥
Building Operating System (API)
1
Application HTTP HTTP
Applica I} WebSocket
Logic Layer i
Analytics :
DSM MPC H
(FDD) g
Algorithms and Analytics
Visualization e
Layer |
User Interfaces

Figure 12 Five-layer microservice-based reference architecture

The primary objective of these layers is to improve the system's logical separation of concerns. Each layer
consists of multiple containerized microservices that provide specific functionalities.

The Data Sources layer is responsible for collecting data from various sources, including BMS, loT devices,
external APls, databases, and data streams. The Data Integration layer combines this data and transforms it
into a format that the Data Management layer can use. The Data Management layer stores and manages the
data to ensure consistency, availability, and security. The Application Logjc layer implements the system's
business logic (smart building applications like FDD and MPC), utilizing the data from the Data Management

www.brainsforbuildings.org 19/35



http://www.brainsforbuildings.org/

BRAINS 4
BUILDINGS
layer. The Visualization layer presents the system's results in a user-friendly and understandable manner,
providing a graphical interface that enables users to interact with the system's functionalities and visualize
the data. In the upcoming sections, each layer is explained in detail.

4.1 Data sources Layer

The proposed system architecture includes a Data Sources Layer that comprises three types of data source
categories: a) devices and systems, b) external data sources, and ¢) metadata sources.

A) Devices and systems

The devices and systems source real-time data on various systems, including indoor air quality parameters,
valve positions, and temperature values, which are continuously measured using different sensors connected
to a BAS system. This time series data is collected via BAS systems and stored in databases for analytical
purposes. In addition, buildings also use l0T devices for various use cases, such as monitoring indoor air quality
parameters and smart lighting, generating a large amount of operational data in the form of time series data.
This data also needs to be collected via messaging services such as Pub/Sub that relies on protocols like
MQTT.

B) External data sources

External services such as utility companies and weather services provide data that energy flexibility and
demand-side management applications need to access. This data is periodically downloaded and analyzed in
combination with sensor data or connected to via relevant APIs.

C) Metadata sources

Metadata sources include BIM models, P&ID diagrams, metadata dictionaries, and manuals that contain
valuable information about the building, its systems or data schemas used in various data platforms. However,
the metadata in these sources is expressed using different classification methods (such as key-value, IFC),
making it challenging to integrate them with each other or with operational data from devices and systems.
Sensor metadata in buildings is typically available as a metadata tables, which provides additional information
about the sensor, such as its location and type. These tables are produced by extracting relevant fields from
the BAS systems, or scanning the building automation network. BIM models are another essential metadata
source, as they contain contextual data that is structured and machine interpretable. BIM models can be
created using proprietary or open BIM authoring tools and converting them to a vendor-neutral file format,
such as the IFC data standard, may be necessary. The IFC data standard is an open standard that improves
information exchangeability between BIM software applications and provides a classification system that
standardizes metadata for smart building applications.

4.2 Integration Layer

Achieving integration and interoperability in smart buildings can be achieved through several approaches.

1. Standards-based Approaches: Adopting industry standards, such as BACnet, Zigbee, and Z-Wave, can
help to ensure that different components and systems within the smart building can communicate
and exchange data effectively. However, communicating with other services that do not follow the
same standard cannot be achieved by only relying on this approach, and need middleware/drivers
that translates one standard into another.

2. Middleware/Drivers: Using middleware [2], such as gateways and brokers, can help to mediate
communication and data exchange between different components and systems, ensuring that the
data is in the appropriate format and that the systems can work together seamlessly.

3. APIs and Protocols: Implementing open APIs and protocols, such as REST and MQTT, can help to
facilitate integration and interoperability between different systems and components within the smart
building, as well as with external systems and technologies.

Therefore, the Data integration layer consists of microservices that are required to integrate data incoming
from the data sources layer and facilitate the bi-directional communication using middleware/drivers.
Depending on the nature of the data source, there are several services in the Integration layer that can be
utilized. The integration layer provides drivers or adapters to connect to the data streams of the data sources.

www.brainsforbuildings.org 20/35



http://www.brainsforbuildings.org/

BRAINS 4
BUILDINGS
A suitable driver is required for each data source depending on the underlying protocol, data format, and how
the data is exposed. The ability to integrate different data sources on demand is key to extending the possible
applications that can be implemented atop the system architecture.

Some essential drivers are described below. These drivers or data integration methods are subdivided in three
categories, and each category is linked to its Data type in the Data sources layer.

A) Integrating operational data of devices and systems

BMS Drivers

The BMS driver is the interface between the BMS and the system architecture, providing access to data
from the BMS by connecting to an existing time series database or by loading available historical data to
a time series database. Communication with the BMS controllers is usually based on protocols like BACnet,
but communication within the proposed architecture is implemented using REST APIs and a message
broker. Therefore, a translation mechanism to the BACnet protocol should be implemented in these
drivers. Example implementations of such drivers can be seen in Figure 6 and Figure 8.

loT Drivers

For 10T devices, we propose a driver where sensor data acquired from different 10T sources is published
into a central message broker. Whenever a new device needs to be integrated, a new loT driver must be
introduced. Real-time data available via this MQTT broker can be accessed through a message broker,
such as Mosquitto, using the MQTT protocol.

Message Broker

The message broker is used for two purposes. The first one is to bring the real-time message streams
coming from multiple loT services to a central location. The second service provided by the message broker
is listening to the control commands published by various applications. For example, an application in the
application logic layer can publish a message with a control command to change the set point of an HVAC
controller. When the broker receives this message, the BMS driver which listens to the control command
topic of that device can execute this command.

B) Integrating contextual data of metadata sources

To address the lack of standardization for representing metadata of operational data in buildings, smart
building ontologies [15] and tagging systems are being introduced. Integrating contextual data of metadata
sources is done using smart building ontologies that create a semantic model of the building, also known as
a metadata schema [16]. Linked data techniques are used to connect data from different domains. To
combine multiple ontologies in the Architecture, Engineering, and Construction (AEC) and smart building
domains, ontology alignment and mapping techniques are used to identify common concepts like a
space/room [17]. Operational time series data is not integrated into these metadata schemes, but the
reference to time series data is included [18], enabling the automatic querying and retrieval of time series
data associated with the relevant statements in the metadata schema.

These ontologies provide a formal representation of the domain's concepts and relationships, classes, and
attributes, using a graph data structure in which concepts are represented by graph nodes, and relationships
are represented by graph edges. An example from the Brick ontology0 is shown in Figure 13.

10 https://docs.brickschema.org/intro.html

www.brainsforbuildings.org 21/35



http://www.brainsforbuildings.org/

BRAINS 4
BUILDINGS

| Air Handling Unit |

Variable RAir Volume Box | AHU1A | Variable Air Volume Box |

feeds i HVAC Zone

feeds

____________ hasPart .

Room 410

VAV2-3Zone

hasPart

hasPoint

I---{ VAV2-4.DPR ][ VAV2-4.ZN-T ][ VAV2-4. SUPFLOW ][ VAV2-4.SUPFLSP ]

hasPoint I i 1
! ' : Brick Entity

Supply Air Temp Sensor | | Supply Air Flow Setpoint |
| ! S 2l o Point class
Brick Schema

VAVE_&"I?PRPOS | Supply Air Flow Sensor | Location class definition

Equipment class

| samper Position Setpoint |

Figure 13 Representation of HVAC system using the Brick ontology

To generate a metadata schema, available metadata is converted into subject-predicate-object triples that
conform to the used ontologies. This conversion again requires multiple drivers, depending on the source
system, with essential domains being the building topology, sensors, and observations. Two types of metadata
drivers are implemented, one for the IFC-to-RDF conversion that handles the building topology, and another
for generating a metadata schema based on BMS and IoT sensors using Brick and other Linked Building Data
(LBD)11 ontologies.

IFC-to-RDF converter

Creating a metadata schema from an IFC model requires a purpose-built converter to understand the
available resources and map them to a desired ontology. An IFC-to-RDF converteri? is used to generate
the semantic model of the building based on the IFC file, transforming the IFC statements into RDF
statements conforming to the PROPS, and BOT13 ontologies.

BMS metadata connector

Semantics are extracted from BMS metadata sources like data dictionaries and device specifications,
and a mapping table is used to identify sensors based on their naming convention. The Brick-builder
tool4 is used to parse the file and manually configured relationships to create an RDF graph. The Brick
and SSN15 ontologies are used to describe the BMS and loT domains. loT data streams are identified
by their topics, which act as the unique identifier of the real-time sensor data of an l1oT node and can
be included using a brick:hasTimeseriesld relationship. The metadata schema is stored in a graph
database like GraphDB16 to enable querying and integration with other services.

4.3 Data Management Layer

To enable efficient storage and querying of various types of data, the proposed system architecture must
support different data formats, including time series data, RDF data, object data, and user data. Each data
type requires specific database technology for optimal performance. For example, time series databases are
best suited for storing and querying time-based data, while object databases are ideal for storing files. Object-
oriented storage can also be used for archiving large files and sensor data archives to support machine
learning applications that require significant amounts of data. User and project details for various applications

11 https://github.com/w3c-lbd-cg/ontologies

12 https://github.com/pipauwel/IFCtoLBD

13 https://w3c-lbd-cg.github.io/bot/

14 https://docs.brickschema.org/lifecycle/creation.html#from-structured-tabular-sources
15 https://www.w3.0rg/TR/vocab-ssn/

16 https://www.ontotext.com/products/graphdb/
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can be stored in either relational or document databases. RDF graphs can be stored in GraphDB, a specialized
graph database designed for optimal graph data storage.

4.4 Application Logic Layer
The Application Logic Layer comprises of the REST APl and smart building applications.

A. REST API

The REST API acts as an intermediary between microservices within each layer, including web applications,
databases, and real-time messaging servers. Through the API, historical sensor data can be queried using
relevant unique sensor IDs. Additionally, the API provides endpoints for querying the RDF database and project
data stored in a document database. Main endpoints of the APl are shown in Figure 14.

Sensors ~
/sensors/{id}/records Get sensor data by sensord_id ~

RDF ~
/rdf/{id} Send SPARQL query b4

frdf/{id}/namespaces Get namespaces by project_id from graph

frdf/{id}/sensors Get Sensors by GUIDs of spaces N
fraf/{id}/sensor Get Sensor details by GUID of sensor b4
/rdf/{id}/topics Get mqtt_topic by sensorid N

Figure 14 Main endpoints of the API for accessing timeseries database and graph database
B. Smart building applications

Smart building applications are microservices that combine data-driven algorithms like FDD, energy flexibility
and the BAS system. The proposed microservice architecture facilitates the integration of these applications
with the existing data sources via APl communication. For a closed-loop system, data collection, algorithm
development, and control strategy implementation are accomplished by exchanging data through the API and
message broker.

An example implementation of an MPC for an energy flexibility application with the proposed reference
architecture can be mapped to following steps.

1. Data Collection: The first step is to collect data from the various sensors and systems within the smart
building, such as temperature sensors, occupancy sensors, and energy usage meters. This data is
used as input to the MPC. These data are obtained via various drivers (BMS, weather) in the Data
integration layer from the Data sources layer and recorded in the timeseries database in the Data
layer.

2. Data Pre-processing: The data collected from the sensors and systems needs to be pre-processed and
transformed into a format that can be used by the MPC. This may include cleaning and normalizing
the data, as well as transforming it into a form that can be used for predictive modeling. This step
happens within the MPC microservice developed within the Application logic layer within a
development environment such as Python/JupyterNotebook. Here, required data can be obtained
from databases by sending API requests with necessary sensor IDs.
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3. Predictive Modeling: The next step is to build a predictive model that can be used to forecast the future
state of the HVAC system based on the input data. This may involve using machine learning algorithms,
such as neural networks or decision trees, to develop a predictive model. This step also happens within
the MPC microservice developed within the Application logic layer within a development environment
such as Python/JupyterNotebook.

4. MPC Implementation: Once the predictive model is built, the MPC can be implemented to control the
HVAC system. The MPC takes the input data and uses it to make predictions about the future state of
the system. The MPC then uses these predictions to optimize the control of the HVAC system in real-
time, ensuring that the system operates efficiently and effectively. Outputs of the controller can be
published to the real-time message broker (like MQTT). Thereafter, the suitable drivers in the
Integration layer translates these setpoints/commands to the device protocols in the Data sources
layer.

Example applications developed according to the proposed architecture are demonstrated in Chapter 5.

4.5 Visualisation Layer

The Visualization Layer comprises of interfaces, web pages, dashboards, or charts that can provide meaningful
ways to communicate information to the end-user. The choice of which interfaces to use depends on the type
of application.

4.6 Implementing non-functional requirements
In the previous chapter, seven non-functional requirements were introduced as:

NFR1 - Modularity

NFR2 - System availability

NFR3 - Efficiency

NFR4 - Interoperability

NFR5 - Security

NFR6 - Usability

NFR7 - Scalability and extensibility

NN

How these non-functional requirements can be integrated with the reference architecture is discussed below.

Modularity: Modularity of the system can be achieved by a service-oriented approach. This means that each
new application or service is implemented aa a microservice and the communication between this and other
services is realized using the APl and message broker. This way, new components can be added or removed
without affecting other components. Software tools such as Dockerl” and Kubernetes!® can be used to
containerize and orchestrate modular components of a smart building system.

System availability: Availability refers to the ability of the smart building system architecture to remain
operational and accessible to users over time. This includes factors such as uptime, system response times,
and fault tolerance. Tools such as Prometheus!® can be used for monitoring the availability of system
components and alerting them when problems occur.

Efficiency: Efficiency can include considerations such as load balancing, data compression, and energy-
efficient hardware. Software tools like Apache Spark, Hadoop, and Apache Flink can be used for big data
processing and analytics to improve system efficiency.

17 https://www.docker.com/
18 https://kubernetes.io/

19 https://prometheus.io/docs/introduction/overview/
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Interoperability: Communication between different components should be achieved by APl and message
brokers. Middleware software like Apache Kafka20, Mosquitto or RabbitMQ2! can be used to enable
interoperability between different system components and protocols.

Security: For authentication and access control, libraries such as openlD22 which implement OAuth2.023
specification can be used. For secure connection between the building and the remote cloud, VPN connections
can be established using VPN solutions like OpenVPN24,

Usability: Depending on the use case, different user interfaces for interacting with the building data are
needed. Some examples include Grafana dashboards, web applications and digital twin platforms.

Scalability and extensibility: To support growth and expansion of resources over time, cloud-based
infrastructure can be used. Cloud-based platforms like Amazon Web Services (AWS) and Microsoft Azure can
provide scalable and extensible infrastructure for smart building systems, allowing for easy expansion and
growth. Typically, there are three main cloud service models to choose from:

1. Infrastructure as a Service (laaS): This model provides the most control and flexibility over the cloud
infrastructure. The smart building can choose to use virtual machines, storage, and networking
resources as per its requirements.

2. Platform as a Service (PaaS): This model provides a platform to build and deploy applications
without worrying about the underlying infrastructure. This can be a good option for smart buildings
that need to quickly develop and deploy new applications.

3. Software as a Service (SaaS): This model provides complete software solutions that can be
accessed over the internet such as databases and message brokers. This can be a good option for
smart buildings that want to use off-the-shelf applications without having to worry about
infrastructure and maintenance.

20 https://kafka.apache.org/

21 https://www.rabbitmg.com/

22 https://openid.net/what-is-openid/

23 https://authO.com/intro-to-iam/what-is-oauth-2
24 https://openvpn.net/
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IMPLEMENTATION

A reference architecture is implemented in one of the Brains4Buildings Living Labs, and smart building
applications are continuously being tested using this implementation. In this section, we discuss the current
implementation details and the smart building applications we tested during the implementation of this
architecture. The main Living Lab deployed for testing this reference architecture is the Atlas Living Lab at
Eindhoven University of Technology.

5.1

Software implementation

This section describes the software components used to implement an instance of the reference architecture.

Data sources layer:

In the current implementation we have replicated a database to represent the BMS. We used three
loT sensors to test real-time data streams.

At this stage, we do not use external data sources like weather or utility signals, and this will be
implemented in future.

We use BIM models and BMS metadata tables under the Metadata sources category.

Integration layer:

We implemented three |oT drivers to subscribe to their real-time data streams. These drivers are
Node.js services. We used Eclipse Mosquitto as the message broker. Real-time message service is
another Node.js service that unifies 10T payloads into a flat map structure.

For metadata integration, we implemented the two metadata connectors described in the previous
chapter, IFC-to-RDF converter and the BMS metadata connector. There services run as standalone
applications and are not integrated into the system yet.

Data layer:

We instantiated three databases to facilitate different types of data. Timeseries data is stored in a
MongoDB Timeseries collection. Files such as BIM models are stored in MINIO, a blob storage
database solution. Semantic graphs are stored in a GraphDB graph database in RDF.

Application logic layer:

This layer consists of the APl and the smart building applications. We implemented a Node.js API using
Nest.js framework and created several endpoints to interact with the three databases.

At this stage, there are only monitoring and no control applications are implemented. These
applications are described in the next section.

Visualization layer:

Visualization layer consists of a web application developed using React.js framework. This web
application was developed to visualize a BIM model in the browser and link the timeseries data of
sensors in to the Rooms in the BIM model.

We also implemented a Grafana dashboard to query sensor data in combination with a Brick model
of a building to demonstrate the metadata integration process.

These two applications are described in the next section.
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5.2 Implemented smart building applications
In this section, we demonstrate the applications we have implemented so far using the proposed architecture.

A) BIM loT Integration

This application is designed to integrate timeseries data of sensors with a BIM model of a building. The web
application provides access to the BIM model via a browser and is used to demonstrate the functionality of
the proposed system architecture. The REST API endpoints are utilized to connect the web application to the
semantic graph, time series data and BIM models. Full description of the implementation is published in the
article “A web-based approach to BMS, BIM and loT integration: a case study. CLIMA 2022 Conference”25,

#Eﬂc&*

<y

Figure 15 Visualizing BIM model and timeseries data using the web application chamari [18]

B) Real-time message service

This application was developed for standardising the payloads of different formats coming from multiple loT
devices into a common format and allow front-end applications to connect to these real-time data streams.
The Atlas Living Lab of TU Eindhoven is used as the example building. A metadata schema of the building was
created using the metadata drivers of the proposed architecture. To test the real-time data streams, three loT
sensors were used. The goal is to filter the available 10T sensors in the building according to their location, and
visualize their real-time data streams of the building using a web application. The intended functionality is to
query the building’s structure first (as in floors and rooms), and then select a sensor that belongs to the
particular room to see its real-time data stream.

Figure 16 illustrates the process of data acquisition from different loT devices via Mosquitto MQTT Broker,
processing them (flat map) to a unified structure and publishing them to a message broker. This application
comprises five components; 1) a collection of data acquisition modules (data providers), 2) a module for
unifying schemata and semantics (message processor), 3) Pub/Sub and real-time streaming service (based
on MQTT and WebSocket), 4) an ontology-based information model and 5) the API.

The first component is a collection of data acquisition modules, which are responsible for collecting data from
various sources. The second component is a message processor that unifies schemata and semantics to

% https://proceedings.open.tudelft.nl/clima2022/article/view/228
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ensure consistency and interoperability. The third component is a Pub/Sub and real-time streaming service
that is based on MQTT and WebSocket protocols, which enables seamless data exchange between the browser
and server. The fourth component is an ontology-based information model that defines the data structure and
relationships between different data elements. Finally, the fifth component is the APl that provides a
programmatic interface for external applications to access the data. This architecture is designed to provide
real-time sensor data to web applications, and hence, the use of a WebSocket protocol is emphasized. The
WebSocket protocol enables continuous bi-directional data exchange between the browser and server, which
is essential for applications that require constant data exchange without continuously sending requests to a

web server.
F Data Providers - ‘
3 :
¢ ©
These three services v A4 A4
automate the data i(2 Message Broker () mosauvitto

acquisition and, i
standardization to : :
abstract away the ; Y

complexity to client ;

applications
PP Message Processor

3 C

Pub/Sub Message Broker ‘

4.a) subscribe to real time topic
2. SPARQL query to

i) get the sensor ids/ 4.b) Extract historical | ©
message topic Tt g data
RDF store «— | (5 API L Timeseries
> p database
«*GraphDB 3. query results With---------=---ommmm '
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Get sensor ids historical/real time data through API
Different client Application 1 Application 2 Application 3
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the API to access real-: B G D ;
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Figure 16 Connecting to real-time message streams of loT devices

Data providers

A collection of data providers is utilized, with each provider functioning as an independent microservice. This
microservice-based approach allows for the implementation of data connectors for various loT devices, which
can operate independently based on their unique protocols and data models. Furthermore, the addition or
removal of a data provider will not affect the other providers. The primary function of the data provider is to
acquire loT sensor data from different platforms and publish it to the Pub/Sub message broker. Each loT
sensor node is identified by a unique topic, and the data from that node is published to that topic. The current
implementation employed three types of IoT sensor nodes:
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1. Indoor Air Quality sensor from Edimax, measuring CO,, temperature, humidity, CO, TVOC, PM2.5,
PM10, and HCHO. Sensor data can be accessed hourly, daily, weekly, or in real-time via their API.

2. Smart socket from BlitzZWolf, measuring voltage, current, and power. Sensor data can be accessed via
their API.

3. Custom built ESP32-based sensor node, measuring temperature, humidity, CO,, TVOC, illumination,
and battery voltage.

Pub/Sub message broker

The proposed framework employs a Pub/Sub messaging pattern, where a message published by a sender to
a specific topic is instantly received by all subscribers subscribed to that topic. The sender publishes the
message for a topic rather than a particular receiver, and the broker manages the connection between the
publisher and subscribers. In this study, the message broker used is Eclipse Mosquitto, which is based on the
MQTT protocol.

Message processor

The message broker used in the proposed framework receives messages in the original format published by
each loT node, resulting in messages in various formats, such as nested and flat maps. To ensure uniformity,
the message processor service converts these messages into non-nested key:value pairs. The processed
messages are then republished to a message broker. For this purpose, the Redis Pub/Sub broker is utilized.
As the proposed framework is designed to manage data for web-based applications, the WebSocket library,
socket.io, is used. A sample of a processed message is shown in Figure 17.

topic: 'esp32/083AF266DD84/pub ',
keys: [ 'co2', 'tvoc',
rted; YRR, YIuRY, Yvbat! 1;
values: [ 872, 71, 27.3233,
56.39648, 586.6666, 4.1569 1,
timestamp: 1662298546131

1

Figure 17 IoT payload transformed in to a uniform format

Information model (metadata schema)

The proposed framework utilizes semantic descriptions of the information model using SSN/SOSA, Brick, and
LBD ontologies. This enables accessing, integrating, and extracting information from various data providers
(loT and non-loT such as BIM, BAS, etc.). A sample of the information model is shown in Figure 18, while the
complete model is available in the GitHub repository26. The Brick ontology's time series identification is used
to incorporate MQTT topics, allowing unique identification of real-time data from an IoT node located in a
specific space in a building.

2 https://github.com/ISBE-TUe/atlas-building-graph
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Figure 18 Part of the metadata schema of the building representing sensors and their relationships27

Application Programming Interface.

To fulfill client requests for data, a WebSocket connection is established between the APl server and the client
(web application). Additionally, the API endpoint for executing SPARQL Protocol and RDF Query Language
(SPARQL) queries on the building and sensor information model. Figure 19 shows how the results of the
queries on the metadata schema of the building are displayed in the web application. Figure 20 shows the

real-time data stream of the selected loT sensor.

27 https://github.com/ISBE-TUe/atlas-building-graph
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Figure 19 Visualizing the results of metadata schema querying for for the structure of the building and its available sensors
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Figure 20 Connecting to and visualizing the real-time loT data stream via the web application
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C) Metadata schema generation

This application demonstrates the BMS metadata connector and the APIl. The building used for the
demonstration is the Pulse building at TU Delft. We used the API to perform queries against the metadata
schema and retrieve relevant time-series data from the time-series database. We also designed a Grafana
dashboard to facilitate user exploration of metadata and time-series data. The APl enables the communication
between the time series database, GraphDB, and the Grafana web application.

Through the Grafana dashboard, users can filter the points of interest in the BAS by selecting equipment types
from a dropdown list (green box in Figure 21). This list contains all the equipment types in the metadata
schema generated. For instance, in Figure 21, brick:Equipment is selected as the equipment type AHU. This
selection triggers a SPARQL query that requests the time-series identifiers related to all the points associated
with brick:AHU in the graph. The resulting list of points is then displayed (red box in Figure 21), and users can
select one or more of these identifiers to explore the time-series data. For example, in Figure 21, the
brick:Differential _Pressure_Sensor has been chosen to explore the time-series data. This selection results in
an APl request being sent to the time-series database with the time-series identifier, and the charts are
subsequently populated with data. Overall, this approach provides an efficient and user-friendly way of
navigating through large amounts of time-series data with standard semantics.

5 B8 General / Delft Building33 # <5
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Q me bucker | 1d - Sensor i 202-EF-0 - | wick Fai EAFILT-DF -
AHU

(R4
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@
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Figure 21 Grafana application integrated with metadata schema of the building.
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6 CONCLUSION

6.1 Mapping the design requirements to the reference architecture

In this report, we proposed a reference architecture for smart buildings. We started by analysing the various
requirements of different stakeholders. Then we transformed these into functional and non-functional
requirements for designing a system architecture. The design was informed by the literature, best practices
and our own experience in the Brains for Buildings project. Here, the emphasis on the Application logic can be
seen by the connection of three functional domains (data analytics, control, and communication) to this layer.
The core of the system architecture lies within the Application logic layer.

Data sources layer

‘ Data integration layer ‘

Reference

- Data management layer ‘
Architecture

Application logic layer ‘

‘ Visualization layer ‘

Functional view Data collection Data Data analytics Communication Control Vlsual‘lzapon‘
management monitoring
¥ | W v v
Functional
FR1 FR2 FR3 FR5 FR7
requirements
- v v. )
il Third

Stakeholders Facility Building owners : " paw Occupants

managers service providers

Figure 22 Mapping the relationship between stakeholders, functional requirements and functional views to the proposed
reference architecture

6.2 Other technical considerations

There are other concerns regarding the optimum methods for data storage and usage which are interesting to
investigate and further integrate with the proposed reference architecture. These are briefly addressed below.

6.2.1 Data retention period

The retention period for smart building data may vary depending on the specific use case and the type of data
being collected. For example, sensor data for HVAC systems may need to be retained for a shorter period of
time than occupancy data.

In general, it is recommended to keep the data for as long as it is useful for analysis and decision-making.
However, longer retention periods may come with increased storage costs and potential privacy concerns.
Therefore, it is important to consider the value of the data, the cost of storage, and any legal or regulatory
requirements when determining the best retention period for smart building data. It may also be helpful to
consult with domain experts and stakeholders to determine the appropriate retention period for specific use
cases.

Some methods implemented by industry practitioners are:

www.brainsforbuildings.org 33/35



http://www.brainsforbuildings.org/

BRAINS 4
BUILDINGS

1. Save only changes in values rather than all values
2. Save aggregated values rather than raw data
3. Discard the data after models are made

6.2.2 Optimum data storage

Several data storage techniques are suitable for smart buildings, depending on the data type and size, the
required scalability and availability level, and other factors. Relational databases, Time-series databases,
NoSQL databases, and Object storage databases are the most common. However, other concepts, including
Data Lakes, Data Warehouses, Data Hubs, and multimodel databases, also exists, which may be suitable
depending on the context. Therefore, the choice of database ultimately depends on the specific requirements
and constraints of the application or system being developed.

6.2.3 Real-time vs non real-time control applications

A software system architecture for real-time smart building control applications should be designed with a
focus on low latency and reliability in mind. Although many smart building applications are focused on batch
analytics and generating insights, some applications like MPC need to interact with the building controllers in
(near) real-time. For this, the system architecture must have:

1. Low latency: The system must respond with minimal delay to ensure efficient and effective building
control.

2. Reliability: The system should be highly available and resilient, with failover mechanisms and backup
solutions in case of system failures.

These are considerably different requirements compared to smart building applications that rely primarily on
one-directional data analytics and information visualization. Specific care should be taken when implementing
this solution, and this is expected to result in a system architecture that is much more custom than the
reference system architecture presented in this document.
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