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Abstract 
Electric vehicles (EVs) are becoming increasingly popular to reduce greenhouse gas 

emissions from the transportation sector. However, the increasing number of EVs also 

leads to an ever-growing peak power load on the electricity grid, which can cause 

stability issues and increase costs necessary for grid expansion. To address this 

problem, smart charging solutions have been proposed, which aim to distribute EV 

charging in a way that reduces the peak load on the grid. This research presents a 

versatile smart charging controller design for small EV fleets based on optimization 

modelling, which successfully redistributes EV loads to allow for peak-shaving and 
valley-filling. 

To achieve this goal, an online form to acquire EV charge related data is utilized, which 

can be used as an input for an optimization model along with building load and PV 

power data. By using this online form, user-specific information is collected, and avoids 

the necessity of State of Charge (SOC) values for redistributing EV loads more efficiently. 

The smart charging method used in this research, optimization modelling, has proven 
successful for planning and controlling EV charging during a workday. 

The optimization model is tested using different variations (linear and bilinear models 

with different weight factors and sampling intervals), and the performance has been 

found to be better with linear optimization models in terms of computational time. 

Furthermore, adding a penalty function to the cost function greatly improves the 

control performance by alternating charging between the cars at higher current values, 

resulting in higher charging efficiency. 

The simulation study showed that the peak power reduction is significant on the main 

simulation days, and the model allows for peak-shaving and valley-filling. The 

optimization model is versatile, as it can be adapted by changing the parameters, such 

as the total charging efficiency, the maximum voltage, power, and current, for different 
types of EV chargers. 

In conclusion, this research provides a solution to the ever-growing peak power loads 

due to uncontrolled EV charging by offering a smart charging controller design. The 
design successfully redistributes EV loads to allow for peak-shaving and valley-filling. 
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1. Introduction 
1.1. Background 
To limit global warming and meet the goals of the Paris agreement, greenhouse gas 

(GHG) emissions need to be reduced (United Nations Framework Convention on 

Climate Change (UNFCCC), 2016). The transport sector accounts for 23.3% of all the 

European Union (EU) GHG emissions in 2020, and 76.7% is from road transport, which 

is made up of 59.4% by cars (European Commission & Directorate-General for Mobility 

and Transport, 2022).To reduce GHG emissions due to the transport sector, the use of 

electrical vehicles (EVs) is rapidly increasing. In the Netherlands, the percentage of EVs 

in newly registered vehicles has increased from 5.8% in 2016 to 29.8% in 2021 

(Netherlands Enterprise Agency, 2022). In Europe, the share of EVs in new car 

registrations has increased from 1% in 2016 to 17.8% in 2021 (European Environment 

Agency, 2022). However, the sustainability of these EVs depends on the mix of 

generation types used to charge them (Van Der Meer et al., 2018). Furthermore, the 

mass-scale deployment of EVs introduces a large increase in the electricity demand 

potentially larger than current power systems and generation capacity are capable of 

handling (Mangipinto et al., 2022). Currently, EVs are mostly charged uncontrolled at 

high charging loads, in increasingly shorter times with the introduction of fast charging, 

resulting in high peak load demands (Chadha et al., 2022).  

 

1.2. Research motivation 
At workplaces, EVs usually arrive in the morning (6 – 9 am) and depart late in the 

afternoon (Sadeghianpourhamami et al., 2018). Charging takes place mostly in the 

morning, while PV-generated electricity is available in the afternoon. This can result in 

both a high peak demand in the morning and a surplus of sustainably generated 

electricity, or valleys, in the afternoon. By adopting smart charging strategies to shift EV 

loads, peak loads can be reduced, and charging can occur when sustainably generated 

electricity is available. (Heilmann & Wozabal, 2021) Both, increasing the self-use of 

sustainably generated electricity and reducing the necessity for large-scale grid 
infrastructure investments. 

 

1.3. Problem statement 
This research concerns a case study of the office of Kropman in Breda in the 

Netherlands. The office has a small fleet of EVs, where currently charging is 

uncoordinated. This results in EVs being charged directly when plugged in, often at the 

same time, resulting in a large power peak demand in the morning. Contrarily, in the 

middle of the day there can be a surplus of energy due to an overabundance of PV-

generated electricity. Since charging times are often shorter than the dwell time, the 

time an EV is plugged in, there is a potential to shift the charging loads by delaying or 

scheduling charging. This can be used to reduce the power peaks and increase the self-

consumption of PV-generated electricity. In previous research by Somers (2022), the 
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application of machine learning models to predict the individual EV charging load was 

explored, to create accurate predictions for robust smart charging control applications. 

In the case of a small EV fleet, such as at the office of Kropman Breda, it is difficult to 

identify load patterns and make accurate predictions, unless the presence of EVs is 

known. Furthermore, at the moment state of charge (SOC) values, such as the amount of 

energy at arrival, are not yet shared by EVs.  

1.4. Research aim 
In this research, considering the above-mentioned problems, a solution is being 

explored which does not rely on EV load predictions or the availability of SOC values. To 

provide the smart charging controller with the necessary input, a web application is 

created to obtain user-specific information, such as the departure time and desired 

amount of energy in kWh. The user-specific information is used as input for an 

optimization model. The model determines the best time and charging current for each 

EV to charge based on the input variables and PV- and building load predictions. The 

goal of EV charging scheduling is reducing peak loads and timing of charging with the 

availability of renewable (solar) energy. Furthermore, reducing the cost of charging by 

using available solar energy and taking into consideration variable energy prices. 

Therefore, the research question of this project is as follows: 

How to implement smart charging to shift EV loads, increase the self-use of PV and 

reduce peak loads, without the use of SOC values and EV load predictions? 

To answer this research question, the following sub-questions are answered in this 
research: 

- What method of smart charging is best applicable to solve the research problem? 

- To what extent does the smart charging solution improve energy flexibility, PV self-

use and decrease peak loads? 

 

1.5. Thesis outline 
This thesis starts with literature research on exploring smart charging and recent 

methods used for smart charging and optimization modelling in Chapter 2. An overview 

of the case study is given in Chapter 3. This is followed by a description of the research 

methods used in Chapter 4, which includes: optimization modelling, simulation, the use 

of a power hardware-in-the-loop (PHIL) testbed and key-performance indicators (KPIs). 

In Chapter 5 the results of the data analysis and simulations are presented and 

discussed. Finally, Chapter 6 presents the conclusions drawn from the research and 

recommendations for future research. 
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2. Literature study 
2.1. Smart charging 
Smart charging involves “adapting the charging cycle to best meet both the restrictions 

and conditions of the power system and the needs of electric vehicle (EV) users” 

(International Renewable Energy Agency, 2019). Smart charging is a general term for 

various methods of intelligently controlling the charging of electric vehicles (EVs). The 

goal of smart charging is to reduce the peak demand and overall load on the grid, reduce 

the economic impact on the EV owner by reducing charging costs and increase the 

sustainability of EVs by utilizing renewable energy (Sadeghian et al., 2022). Smart 
charging has potential benefits for the EV owner, grid operators and the environment. 

Increase renewable energy utilization 

According to (Fachrizal et al., 2020), the sustainability of an EV depends on the 

generation type of electricity used to charge it. Well-to-wheel (WTW) emissions of an 

EV charged with coal-based power are comparable to gasoline-based combustion 

engine vehicles. If recharged with PV or wind-generated energy the WTW emissions can 

be close to zero. Increasing EV load flexibility allows for higher renewable energy 

utilization, by allowing the loads to be shifted to when sustainably generated electricity 

is available. 

Reduce grid infrastructure investments 

Both high electric load from charging EVs and generation from variable renewable 

energy sources (VRES), put stress on the existing electricity systems that necessitate the 

costly upgrade of lines and transformers in voltage grids (Heilmann & Wozabal, 2021). 

Across Europe, the transmission grid expansion is expected to cost between 30 billion 

to 93 billion by 2050 (Egerer et al., 2013). Coordinated smart charging of EVs is a way to 

reduce stress on distribution grids and reduce grid expansion investments. According to 

Heilmann & Wozabal (2021), uncontrolled charging results in peak loads, while VRES 

results in valleys, shifting loads by smart charging potentially reduces stress on the grid 
from both. 

Reduce charging costs 

As mentioned before, increased EV load flexibility allows for higher utilization of 

renewably generated electricity. This potentially lowers the charging costs for instance 

by using PV-generated electricity compared to electricity from the grid. Furthermore, if 

Time of Use (TOU) pricing is in place, EVs can be charged considering the overall 

demand on the grid and electricity prices  (Chadha et al., 2022). 

 

2.1.1. Keywords 
The purpose of this literature review is to research recent smart charging methods. 

First smart charging in general and its potential benefits are described. Then recent 

charging methods from 2018 to the present are reviewed. The goal is to show 
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similarities, variations, and shortcomings of previous work to make recommendations 

for a future application of smart charging. 

This review will examine EV smart charging approaches from the year 2018 to the 

present. This time-period is chosen to focus on recent smart charging methods only. 

General keywords used to search for literature and complete this review are smart 

charging, EV smart charging, EV smart charging workplace, EV smart charging office, 

vehicle smart charging, EV smart scheduling, EV scheduling, EV load balancing, electric 
vehicle “load balancing”, flexible charging, EV valley filling & V2G. 

 

2.1.2.  State-of-the-art 
In this section, various smart charging methods as proposed in recent literature (2018 – 

present) are described. Limited to smart charging methods which involve controlling EV 
charging with the focus on residential or workplace applications.  

Load balancing 

Dynamic load balancing monitors the power load on the grid, limiting the power output 

to prevent overloading the circuit. This also applies when there are multiple chargers 

connected to one power network. Although not all EV chargers have dynamic load 

balancing, chargers connected to the internet can often be upgraded (Tüzes & van 

Barlingen, 2022). 

Unidirectional and bidirectional smart charging 

Smart charging can be done in the form of unidirectional power flow management 

during EV charging, known as V1G. The charging load is shifted over time to better fit 

the grid conditions and availability of sustainably generated energy. This is also 

referred to as “valley filling” (Wang et al., 2019). Additionally, the implementation can 

include bidirectional charging, known as vehicle-to-grid (V2G), that enables energy to 

be stored in the battery of the EV and later discharged back to the grid. Alternatively, 

the energy can also be exported to a building, known as Vehicle-to-home (V2H) and 

Vehicle-to-building (V2B) (He et al., 2022). One of the benefits of bidirectional charging 

is increased load flexibility (Wei et al., 2022). However bidirectional charging 

introduces a much higher degree of difficulty. For example, additional costs due to 

battery degradation need to be considered. Should EV owners be compensated for the 

additional wear of their EV’s battery and if yes how much? Furthermore, bidirectional 

charging can increase the charging time, which with unpredictable user behavior can 

introduce additional inconvenience and difficulty.(Gschwendtner et al., 2021; Spencer et 

al., 2021) 

Flexible charging 

One of the methods for smart charging involves using time of day set points for charging 
current. A recent paper by Bons et al. (2021) paper describes a large-scale project called 
“Flexpower”. It describes a method called flexible charging, which controls EV charging 
speed to reduce peak loads and match charging loads with the availability of sustainably 
generated energy. Time-dependent charging profiles are applied to public charging 
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stages in Amsterdam. During household peak consumption hours charging current is 
reduced, increased during the night-time, and linked to solar intensity levels during the 
day. The results showed that the peak loads from EVs can be reduced with limited user 
impact. Although this project focuses on publicly available charging stations, there is a 
possibility of applying this method at a workplace. The use of time-dependent charging 
profiles is limited compared to other papers that propose elaborate optimization 
models, especially when applied at a workplace. Limiting the charging speed with set-
points can result in longer charging times, which can reduce energy flexibility rather 
than increase it. A more dynamic smart charging solution would offer more energy 
flexibility, cost benefits and user convenience (Bons et al., 2019). 
 
Optimization modelling 

Recent studies with similar research objectives often make use of optimization 

modelling for scheduling EV charging. Compared to the methods mentioned previously 

in this chapter, this smart charging method is more complex and allows for a wider 

range of applications and inputs. For example, a wide range of chargers and EVs or the 

inclusion of PV predictions. 

The optimization models often make use of a form of convex programming or integer 

programming. Both include only unidirectional charging (V1G) or also bidirectional 

charging (V2G). In the table below relevant references are presented, including their 

main objective, inputs, optimization model and limitations. 

Table 2.1 Relevant references and their optimization methods 

References Main Objective V2G Time-
scaled 

Inputs Optimization 
model 

Predictions Numb. 
of 
chargers 

Limitations 

Van der 
Meer et al. 
(2018) 

Decreasing 
charging costs by 
optimizing power 
flows between PV 
systems, grid and 
BEVs. 

yes 15-
min 

Arrival 
time, 
departure 
time and 
desired 
energy 
content 

MILP 
CPLEX solver 

Weather 
(ARIMA) 

1 and 2 Only 1 and 2 
chargers were 
tested. Only case 
study with 
"realistic" inputs 
and no 
implementation. 

Fridgen et 
al. (2021) 

Allocating a 
limited available 
power at one 
coupling point in a 
way that 
maximizes the 
resulting utility of 
EV drivers in 
bottleneck 
situations. 

no 1-min departure 
time and 
the 
required 
amount of 
energy for 
the 
expected 
travel 
time  

MILP No 1 to 3 The model is 
evaluated with 
"exemplary 
cases”and is not 
suitable for real-
world 
application 

(Wang et 
al., 2019) 

"Valley filling" to 
match the charging 
of EVs at a 
workplace with 
peak PV 
production. 

no 15-
min 

Arrival 
time, 
layover 
time and 
energy 
demand 
assuming 
a full 
charge by 
the 
departure 
time 

QP PV 31 Simulation only 
with realistic 
data. 
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(Ramos 
Muñoz & 
Jabbari, 
2020) 

Shift PEV charging 
to fill the overnight 
demand valley 

no - “Flexibility 
ratio” 
calculated 
from the 
dwell 
time, 
desired 
charging 
demands 
and 
maximum 
charge 
rate 

LP No 500 The assumption 
is made that each 
driver knows 
their driving 
patterns for the 
entire workday 
with reasonable 
accuracy 
Simulation of 
parking 
structures with 
500 BEV only. 

(Lee et al., 
2018) 

Defer costly 
infrastructure 
upgrades while 
also meeting 
operator 
objectives, such as 
minimizing 
charging delay, 
maximizing 
revenue, or 
following demand 
response signals 

no 10-
min 

Expected 
departure 
time and 
energy 
demand 

Convex 
optimization 
MPC 
algorithm 

No - Only simulation 
using real 
historical data. 
Real-life 
implementation 
limited (Heredia 
et al., 2020) 

 

The optimization model for EV charging described by Fridgen et al.  (2021),  uses 

mixed-integer linear programming (MILP). The output of the model is an EV charging 

schedule that takes the expected travel time of the owner into consideration. The input 

variables are the departure time and the required amount of energy for the expected 

travel time. The model is evaluated using “exemplary cases”. This means the model is 

evaluated for the occurrence of bottlenecks by using selected input data for the different 

parameters. A limitation is that the current model is programmed in a hard class of 

optimization problems and adequate mathematical solutions for real-world applications 

need to be developed. The problem with hard class optimization problems is that they 

“cannot be solved to optimality or within a reasonable integrality gap by any standard 

MIP solver within a reasonable time limit”  (Kallrath, 2009). 

Wang et al. (2019), propose unidirectional EV charging scheduling based on short-term 

solar forecasts. The paper describes a typical valley-filling problem that focuses on 

workplace charging of EVs during regular business hours coinciding with times of peak 

PV production. Control parameters, including charge power, are optimized using 

quadratic programming. To allow for a corrective approach, control actions are 

modified by a receding horizon algorithm. The research by Wang et al. (2019), is limited 
to simulation with realistic input data and therefore might lack real-world variability.  

In the work of (Ramos Muñoz & Jabbari, 2020), a smart charging protocol for a 

workplace is proposed. The protocol uses an ordering strategy based on the vehicles’ 

load-shifting ability to develop a charging order. A decentralized smart charging 

strategy is used that generates a charging profile for each EV via linear programming 

(LP). This is based on the drivers' “expected driving patterns”. This includes the dwell 

time, desired charging demands and maximum charge rate. From these values, a 

“Flexibility ratio” is calculated, which is to create a charging order for the EVs. Cost 

optimization is used to generate a parking structure demand load with desirable 

characteristics. An algorithm assigns EVs to chargers in calculated time slots. A 
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limitation of the study is that the assumption made that each driver knows their driving 

patterns (i.e., periods between dwell times and distances travelled during these 

periods) for the entire workday with reasonable accuracy, which might not be the case 

in practice. Furthermore, the research is limited to simulation only. 

One of the papers with the most similar objective is the work by Van der Meer et al.  

(2018), which presents a promising design for an energy management system (EMS) 

that uses PV forecasting to optimize power flow between PV, grid and EVs at a 

workplace. The design uses mixed-integer linear programming (MILP), which 

determines at what time the charging results in the lowest overall cost. In this case, both 

the arrival and departure times are considered as variables for each EV as well as the 

BEV owners’ desired energy content upon departure. This allows for the charging of 

multiple EVs to be best allocated during the day. The research includes case studies, 

with one and two chargers. The case studies are performed by running the EMS with 

selected “realistic” input variables. The study is limited to one and two EV chargers. 

Furthermore, the input variables are currently selected and not based on actual data. 

Translating these promising results to practice is challenging since some values can be 

more variable in practice. 

Lee et al. (2018), describe an online scheduling system for EV charging. It uses an 

adaptive charging network (ACN), which computes charging rates using model 

predictive control (MPC) and convex optimization. A mobile application is used to 

collect user input. This collects the expected departure time and the energy demand of 

the EV owner. The model can operate based on various utility functions. Two examples 

are given: a utility function that maximizes profit and one that encourages charging as 

quickly as possible. Optimization is done based on a utility function and set 

infrastructure constraints such as a maximum power draw.  

Research by (Heredia et al., 2020) includes a real-world implementation of the smart 

charging technology described by Lee et al. (2018). The study took place at a workplace 

with sixteen EV chargers. The ACN calculates charging power limits for each charger, 

taking into consideration the requested energy and power demand of the owner, while 

keeping the aggregate power under the capacity of the transformers serving the EV 

charging stations and below a power peak threshold to lower electricity costs.  

The papers mentioned use a varying range of optimization model programming 

methods. Depending on the use case different methods are used. Firstly, convex 

optimization, which is used in the paper by Leet et al. (2018), is a term for a broad range 

of problem classes. A convex optimization problem is an optimization problem for 

which the objective function is convex, and the problem can reach a global optimal 

point. A linear optimization problem, used by Ramos Muñoz & Jabbari (2020) is very 

much like a convex optimization problem, however, the objective and all constraint 

functions are all linear. In the case of quadratic programming (QP), the optimization 

problem involves quadratic functions (Boyd & Vandenberghe, 2004).  

The papers by Van der Meer et al. (2018) and Fridgen et al. (2021), make use of mixed-

integer linear programming (MILP), which is a form of integer programming. These are 

forms of optimization problems in which the function uses integers as well. One 
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mathematical optimization model is not necessarily better than another, their suitability 

depends on its use case. 

2.1.3. Research gaps and research focus 
Recent smart charging methods that involve controlling charging current range from 

relatively simple to complicated solutions. This seems to be related to whether it 

includes a real-life implementation. For example, the research by Bons et al. (2021), 

involves a large-scale project. However, the use of time-dependent charging profiles is 

limited compared to other papers that propose elaborate optimization models.  

Other smart charging solutions that involve optimization modelling with multiple input 

parameters, many constraints and an elaborate objective function are often limited to 

simulation. For example, the paper by van der Meer et al. (2018), describes a promising 

cost optimization model, which is evaluated using case studies with realistic input data. 

Similarly, the papers by Wang et al. (2019), Lee et al. (2018) and Fridgen et al. (2021), 
evaluate their models by simulating with realist values or historical data. 

When the research does involve a real-life implementation the smart charging 

controller is limited. In the research of Heredia et al. (2020) for the test deployment, the 

user input variables are set to a default constant value of 8h and 8 miles. Furthermore, 

the number of constraints is limited, since only the maximum power draw allowed by 

the charging infrastructure and a power peak threshold are considered. To be able to 

deploy an optimization model smart charging method some form of simplification is 

required when the timescale is limited. However, addressing the variability of EV owner 

behavior is an intrinsic part of the smart charging problem. With the inclusion of more 

input variables and constraints, the elaborate smart charging controller proposed by 
Lee et al. (2018) can be greatly improved. 

The input parameters for the optimization models of the smart charging controllers in 

the previously described literature are similar. Most papers make use of the departure 

time and requested energy or aim for a full charge at the departure time. Research by 

Ramos Muñoz & Jabbari (2020) describes a performance indicator called the “Flexibility 

ratio”, which is based on various factors including the dwell time, desired charging 

demands and maximum charge rate. In practice, these values might not be available.  

In the papers by van der Meer et al. (2018), Fridgen et al. (2021) and Wang et al. (2019), 

the optimization model makes use of state-of-charge (SOC) or the energy content at 

arrival. In all papers presented in Table 2.1, the maximum charging power of the EV is 

used in the model. In practice, these values are unknown since they are not shared by 

the EV. For the SOC and maximum charging rate often realistic values or historical data 

are used. In the paper by Heredia et al. (2020), the maximum power draw is ignored 

which results in different power draw calculated by the model compared to in practice, 

resulting in a lower final SOC. 

V2G is excluded from the smart charging solution in most papers found since it 

increases the complexity of the solution. Additionally, according to the study by van der 

Meer et al. (2018) that did implement V2G, it is currently not economically viable due to 
the battery degradation costs. 
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In this research, the focus is on the implementation of a state-of-the-art smart charging 

solution for an office. The goal is to increase the self-use of PV and reduce peak loads 

while meeting the requests of the EV owner. As opposed to changing the real-world 

uncertainty by setting user input to default values, the difficulty of the optimization 

problem is reduced by focusing on unidirectional charging (V1G) only. This is done to 

reduce the complexity of the smart charging problem to allow for a real-world 

implementation of a smart charging controller within the timescale of this research. The 

goal of a real-world implementation is detecting problems that might occur in practice, 

which are not found when using simulation to evaluate smart charging solutions. The 

input parameters for the optimization model are limited to the departure time and 

requested energy by the EV owner, which are acquired through a digital form. The 

research is performed using these two input parameters to reduce the amount of 

information required from the EV owner. This is done to ensure convenience for the EV 

owner and to avoid requiring the user to fill in a large amount of information. Instead of 

making use of SOC values for the model, the requested energy will be used to determine 

optimum charging rates. The minimum charging rate is set to a default value, 

determined by the minimum charging speed of the EV charger. The maximum charging 

rate is determined by looking at the maximum charging current drawn when an EV is 

plugged in or set to a default value when retrieving this information is not possible. This 

information together with PV data and electricity prices is used to develop an 

optimization model which schedules EV charging. This optimization model is a key 

component of the smart charging controller designed for the office. Similarly, to the 

research by Lee et al. (2018), the charging controller makes use of MPC, which uses 

prediction models to control a system with constraints (Miyazaki et al., 2019). 
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3. Case study 
3.1. Overview 
To answer the research question of this research a case study is performed at the office 

of Kropman in Breda, The Netherlands. The office is built in 1993 and has a total floor 

area of approximately 1500 m2. The maximum occupancy count of the office is 35 

people (Reinders, 2022). The building is equipped with a building management system 

that allows for continuous monitoring of the building installations, battery energy 

storage system, EVs and PV. Furthermore, weather measurement data is collected with 

equipment on the roof. Using the weather measurement data, weather predictions are 

made by an external party (Solargis). All the data is stored within a database. An 

overview of the building systems and data collection is presented in Figure 3.1. The data 

is processed within the continuous monitoring system (CMS) InsiteSuite and stored in 

the historical database called InsiteReports. Whereas InsiteSuite allows for real-time 

monitoring of the building systems, InsiteReports allows for requesting historic 

building, charging and weather data. The historic data is processed using Python for 
data analysis and for developing prediction models. 

 

On the roof, 65 PV panels are located, which have a combined maximum capacity of 16.9 

kW (Reinders, 2022). When there is a surplus of solar energy, the electricity is fed back 

into the grid. At the office 4 type 2 EV chargers are available. These chargers allow for 

charging at a maximum of 7.4 kW (1 phase/32 A) or 22 kW (3 phase / 32 A) depending 

on the vehicle type (de Bont, 2019). Aggregated charging power data is available from 

the InsiteReports database. Individual charging detail records (CDR) are available 

through an external partner called Last Mile Solutions (LMS). Additionally, there is an 

application for employees to fill in their attendance called Welkom Kropman. Within the 

application, there is a form for EV charging, which collects user-specific information, 

such as the arrival time, desired amount of EV charging energy in kWh and expected 

Figure 3.1: Overview of the building systems and data collection 
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departure time. This data is processed through InsiteSuite and can be collected using an 

RPC-call. The form is presented in Figure 3.2. 

 

Figure 3.2: The EV charging form in the Welkom Kropman application (in Dutch) 

 

3.2. Smart charging controller 
After discussing the various methods for smart charging and describing the case study, 

a design for the smart charging controller is made. Based on the literature study in 

Section 2.1.2, optimization modelling can offer a fitting solution to the smart charging 

problem at the office of Kropman Breda. It allows for optimizing the distribution of 

energy between EVs during office hours, taking into consideration several constraints.  

• The main input for the model is the user-specific information from the online EV 

charging form, which includes: the arrival time of the employee, the expected 

departure time, and the requested amount of energy in kWh.  

• The second part of the input is the disturbances, which include: the predicted 

amount of PV-generated electricity, the predicted building load and electricity 

prices. Although the latter is considered when developing the optimization 

model, it is not used in this research since time of use pricing is not yet in place in 

the Netherlands. 

MPC is used to control the EV chargers based on predictions and constraints for a 

specified horizon (Miyazaki et al., 2019). All the inputs described are used by the 

optimization model to minimize a cost function. Minimizing the cost function results in 

optimal current values for each EV over time. These current values are then sent to the 

EV charging stations. After a specified time, new data is loaded, and the optimization 

model is re-run. A diagram showing the smart charging process is presented in Figure 
3.3.  
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Figure 3.3: The smart charging process 

 

Prediction horizon 

The prediction horizon relates to how far the model looks into the future. For each time 

step into the future, the optimum current value is calculated. The prediction horizon is 

determined by determining how much time into the future should be considered to get 

an optimal control input for the present, see Figure 3.4. 

 

Figure 3.4: Illustration of the prediction horizon in MPC (Miyazaki et al., 2019) 
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For example, for this case study, the smart charging controller is only active during 

office hours, from 6 am to 6 pm.  When an EV arrives at 6 am, the user-specific data is 

collected. Using the user-specific data, the predicted building load and PV-generated 

electricity for the next 12 hours, the charging of the EV can be planned optimally during 

office hours. If another EV arrives at 1 pm, only the next 5 hours need to be taken into 

consideration. Since after 6 pm, the smart charging controller is not active as it is 

outside office hours. This causes the prediction horizon to decrease during the day from 

12 to 0 hours. On the next day at 6 am, the length of the prediction horizon is set to 12 
hours again. Therefore, a batch-type prediction horizon is used as visible in Figure 3.5. 

 

 

Figure 3.5: Visualization of the batch-type prediction horizon 

 

Time resolution 

How often the model is re-run depends on several factors. Firstly, the time resolution of 

the input data. If the model is re-run when no new data is available, the outcome 

remains the same. In the case of the office of Kropman, data with a time resolution of 

one minute is available. Therefore, the model theoretically can be re-run every minute. 

However, this introduces problems concerning the second factor. For the model to be 

able to be re-run every minute, the computational time of the optimization model 

should be less than one minute. However, processing data with a granularity of one 

minute introduces a large amount of data which can increase the computational time 

significantly. In this research time resolutions of 15 and 5 minutes are tested. A lower 

time resolution, for instance, 5 minutes, is preferred. Since this reduces the reaction 

time between when an EV arrives and when the model is updated. Furthermore, the 

model can react more quickly to changing building load or PV power.  

Charging constraint 

Next to the maximum charge power described in Section 3.1. There are other 

constraints when it comes to charging. The EV should receive a minimum of 6 A, 

otherwise charging stops (De Herdt, 2020). Therefore, the smart charging controller 

should not send values between 0 A and 6 A.  
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4. Methods 
4.1. Data pre-processing 

EV data 

The user-specific data collected using the Welkom Kropman application is stored in the 
following format, as presented in Table 4.1: 

Table 4.1: Example of user-specific data from the online form 

Location 
Name 

Charger ID 
Minimum desired 
range [kWh] Arrival time 

Expected departure 
time 

Breda 1 36 2022-12-22 06:25 2022-12-22 15:00 
Breda 0 10 2022-12-22 13:13 2022-12-22 14:13 
 

This data is pre-processed for the model to be able to handle it. The location name is 

dropped before inputting the data into the optimization model. The table is sorted by 

the charger ID in ascending order. Since the time resolution of the model is 15 minutes 

the arrival times are rounded up to 15 minutes and the departure times are down to 15 

minutes. If the time resolution is 5 minutes the data is rounded to 5 minutes. Since the 

linear optimization model is not able to process date-time objects, the arrival and 

departure time are converted to integers. The minimum desired range is checked to see 

whether or not it is feasible within the expected dwell time. The EV charging model only 

allows for charging either single-phase 32 A or triple-phase 32 A. Since not all EVs can 

charge triple phase, the model is limited to single-phase 32 A. This can result in a 

difference in total energy that can be charged within the dwell time, compared to in 

practice. To prevent the optimization problem from being unsolvable, the amount of 

energy is replaced, when it is larger than the dwell time multiplied by the maximum 

power draw of 7.36 kW. However, since the amount of energy being drawn from the 

charger is not equal to the energy going into the battery of the EV, the desired amount of 

energy is multiplied by the total charging efficiency as well. Finally, the energy at arrival 

is added to the table. This is assumed to be 0 at arrival since SOC values are not 

available. However, when the optimization model is re-run after 15 minutes the energy 

at arrival is set to the amount of energy calculated by the model at the previous 

iteration. An example of the pre-processed EV data is presented in Table 4.2: 

Table 4.2: Example of pre-processed EV data 

Charger 
ID 

E_requested T_arrival T_departure I_arrival I_departure E_arrival 

0 6.624 
2022-12-22 
13:15 

2022-12-22 
14:15 

16717149000000
00000 

16717185000000
00000 

0 

1 36 
2022-12-22 
06:30 

2022-12-22 
15:00 

16716906000000
00000 

16717212000000
00000 

0 

 

For the simulations historic CDR data is used as EV input data. From the historic 

database, the arrival time, departure time and amount of energy delivered by the 

charging pole are available. Therefore, the amount of energy is multiplied by the total 
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charging efficiency to obtain the minimum desired range. Similarly, to processing the 

data from the Welkom Kropman application the amount of energy historically charged 

is replaced when it is larger than the dwell time multiplied by the maximum power 

draw and the total charging efficiency. The total energy charged in practice and the total 
energy charged in the optimization model is presented to allow for comparison. 

Building load data 

Before being able to use the building load for data analysis and as input for the 

optimization model the actual building load needs to be determined. In Figure 4.1, a 

schematic overview of the metered building installations is presented. The total 

electricity going to and from the grid is composed of the main power line and the lights. 

To the main power line, the BESS, PV, EVs, HVAC and power outlets are connected. Of 

these the BESS, PV, EV and HVAC are metered separately.  

 

 

Figure 4.1 Schematic overview of the micro grid of the office building 

To calculate the actual building load, the EV power needs to be subtracted from the 
power from the main power line and the power of the PV and lights needs to be added.  

𝑃𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 =  𝑃𝑃𝑜𝑤𝑒𝑟 −  𝑃𝐸𝑉 −  𝑃𝐵𝐸𝑆𝑆 +  𝑃𝑃𝑉 + 𝑃𝐿𝑖𝑔ℎ𝑡  

Additionally, the power from the BESS is removed from the building load. This is done 
since the control of the BESS is still under development.  

4.2. Data analysis 
Data analysis is performed to research the potential for shifting EV-loads to reduce peak 

loads and increase PV-self use. These EV load shifts are called peak-shaving and valley-

filling, respectively. This is done by looking at historic building load, PV and EV power 

data. The data analysis is performed for the following dates as presented in Table 4.3: 

Table 4.3: Dates used for the data analysis. 

 From To 

Winter solstice December 12th 2022* December 16th 2022  
Equinox March 21st 2022 March 25th 2022 
Summer solstice June 20th 2022 June 24th  2022 
December 12th is chosen since in the week of December 21st no CDR data was available 
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4.3. KPIs 
The performance of the optimization model is evaluated with various KPIs relating to 

energy performance(Li et al., 2021). This allows for accurately comparing the 

performance of uncontrolled to controlled charging and the performance difference 

between the different cost functions.  

Power Peak Reduction (PPR) 

The power peak reduction is an indication of how much the maximum power peak has 

reduced due to applying load shifting. The period for which the maximum peak is 

selected is from 6:00 to 18:00. Since this is when the charging controller will be active.  

 

∆𝑃 [−] =  𝑃𝑃𝑒𝑎𝑘𝑟𝑒𝑓
−  𝑃𝑃𝑒𝑎𝑘𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒

 (1) 

Units: [kW/kWh] Ideal value: as high as possible  

Self-sufficiency (SS) 

Self-sufficiency is related to the percentage of the daily solar-generated electricity that 

is used for compensating the daily electricity load.  

 

𝑆𝑆 [%] =  
daily generation directly consume𝑑

net daily loa𝑑
 (2) 

Units: [%] Ideal value: 100 

Self-consumption (SC) 

The SC is the percentage of solar-generated electricity that is consumed by the building. 

 

 

𝑆𝐶 [%] =  
daily generation directly consume𝑑

net daily generatio𝑛
 (3) 

Units: [%] Ideal value: 100 

Both the SS and SC are good indicators of whether shifting the EV loads results in valley-

filling. However, where the SC only corresponds to the percentage of generated solar 

energy used. The SS also indicates how much of the daily load can be compensated with 
solar-generated electricity by shifting EV loads. 
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4.4. Algebraic model 

Electricity balance 

The diagram below in Figure 4.2, shows the simplified microgrid of the office at Breda. 

The loads are the aggregated building loads, and the aggregated EV charging loads. The 

EV load is separated from the building load as it will be controlled by the smart charging 

controller. PV is the energy produced by solar energy. Energy is either drawn or 
delivered back to the grid based on the total electricity loads and PV production. 

 

Figure 4.2 Simplified microgrid of the Office at Breda 

This results in an electricity balance as shown in Equation 4, where the sum of all loads 

and electricity production is equal to the electricity drawn from the grid: 

𝑃𝐺𝑟𝑖𝑑 =  𝑃𝐿𝑜𝑎𝑑 + 𝑃𝑃𝑉 +  𝑃𝐸𝑉
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 (4) 

When electricity is drawn from the grid; 𝑃𝐺𝑟𝑖𝑑  is positive and when it is delivered back 

to the grid 𝑃𝐺𝑟𝑖𝑑  is negative. This can also be written out by a negative and a positive 
variable, as shown in Equation 2: 

𝑃𝐺𝑟𝑖𝑑 =  𝑃𝐺𝑟𝑖𝑑+ +  𝑃𝐺𝑟𝑖𝑑− (5) 

The positive component 𝑃𝐺𝑟𝑖𝑑+  and the negative component 𝑃𝐺𝑟𝑖𝑑−  are later used in the 

cost function. As visible in Equations 4 and 5, when 𝑃𝐺𝑟𝑖𝑑  is positive 𝑃𝐺𝑟𝑖𝑑−  is 0 and vice 
versa: 

𝑃Grid𝑡
+ {

0        𝑖𝑓 𝑃𝐺𝑟𝑖𝑑  ≤ 0
𝑃𝐺𝑟𝑖𝑑  𝑖𝑓 𝑃𝐺𝑟𝑖𝑑 > 0

(6) 

𝑃Grid𝑡
− {

0        𝑖𝑓 𝑃𝐺𝑟𝑖𝑑  ≥ 0
𝑃𝐺𝑟𝑖𝑑  𝑖𝑓 𝑃𝐺𝑟𝑖𝑑 < 0

(7) 

Since modelling an if statement is not possible in linear programming, the logic is 

written out in the following linear equations: 

𝑃𝐺𝑟𝑖𝑑+ ≥ 0 (8) 

𝑃𝐺𝑟𝑖𝑑− ≤ 0 (9) 

𝑃𝐺𝑟𝑖𝑑+  ∙  𝑃𝐺𝑟𝑖𝑑− = 0 (10) 
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Charging model 

The aggregated EV load is the sum of all the charging power sent to each charging port: 

𝑃𝐸𝑉
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑

 =  ∑ 𝑃𝐶ℎ𝑎𝑟𝑔𝑒𝑐

𝐶

𝑐=1

(11) 

Due to charging losses the actual charging power going to each EV, 𝑃𝐸𝑉𝑐,𝑡
, is lower than 

the charging power drawn from the charging port. The total charging efficiency for level 

2 charging ranges from around 87.2% to 90.6%, depending on temperature and power 

draw (Sears et al., 2014). The assumption is made that the total charging efficiency 
𝜂𝑃𝐶ℎ𝑎𝑟𝑔𝑒

 is 0.9. 

𝑃𝐸𝑉𝑐,𝑡
=  𝜂𝑃𝐶ℎ𝑎𝑟𝑔𝑒

 ∙  𝑃𝐶ℎ𝑎𝑟𝑔𝑒𝑐,𝑡
 ∀𝑐, 𝑡 (12) 

Using the power going to each EV, the energy content of each EV is calculated (Van Der 

Meer et al., 2018): 

𝐸𝑐,𝑡 = {

𝐸𝑐,𝑡
𝑎𝑟𝑟𝑖𝑣𝑎𝑙

𝐸𝑐,𝑡−1  + 𝑃𝐸𝑉𝑐,𝑡−1
 ∙  ∆𝑡

𝐸𝑐,𝑡
𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

   

𝑖𝑓 𝑡 ≤ 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑖
  ∀𝑐                         

𝑖𝑓 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑖
< 𝑡 <  𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑖

 ∀𝑐

𝑖𝑓 𝑡 ≥  𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑖
 ∀𝑐                   

(13) 

At arrival, the energy content is considered to be 0. However, when the optimization 

model is rerun for the same EV the energy content at arrival is set to the energy content 

calculated at that time point. This is to prevent the optimization model from starting 

with an energy content of 0 again, while the EV in practice has already charged. An 

important modification of the original EV energy model by Van der Meer et al. (2018) is 

changing 𝑃𝐸𝑉𝑐,𝑡
 to 𝑃𝐸𝑉𝑐,𝑡−1

. This results in the power and current being calculated one 

iteration before the energy content is calculated. For the first iteration of the 

optimization process, the energy content is 0 and the current and power are the values 

needed to achieve the desired energy content in the next iteration step. 

Constraints 

The charging power drawn from the EV charger is the charging current multiplied by 

the maximum charging voltage of the EV. The maximum voltage 𝑉𝑀𝑎𝑥 is set to a constant 

value of 230V. The charging current 𝐼𝐶ℎ𝑎𝑟𝑔𝑒𝑐,𝑡
 is the control value, which is taken after 

running the optimization model and sent to the charging pole.  

𝑃𝐶ℎ𝑎𝑟𝑔𝑒𝑐,𝑡
=  𝐼𝐶ℎ𝑎𝑟𝑔𝑒𝑐,𝑡

 ∙  𝑉𝑀𝑎𝑥 ∀𝑐, 𝑡 (14) 

The charging current and maximum power draw is limited by the maximum current and 

power draw allowed by the EV charger. The chargers at the office of Kropman Breda are 

type 2 chargers. Which can charge up to a maximum power of 7.4 kW at single-phase 32 

A or 22 kW at triple-phase 32 A (de Bont, 2019). Since it is currently not possible to 

detect whether an EV allows for triple-phase charging, the maximum current and power 

are set to 32 A and 7.4 kW, respectively. 

𝐼𝐶ℎ𝑎𝑟𝑔𝑒𝑐,𝑡
≤ 𝐼𝑀𝑎𝑥 (15) 
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𝑃𝐶ℎ𝑎𝑟𝑔𝑒𝑐,𝑡
≤  𝑃𝑀𝑎𝑥 (16) 

When the time is before the arrival time or below the departure time of the EV, the 

charging current of the respective charger is equal to 0. 

𝐼𝐶ℎ𝑎𝑟𝑔𝑒𝑐,𝑡
= 0, 𝑖𝑓 𝑡 <  𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑐

 𝑜𝑟 𝑡 >  𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑐
 ∀𝑐 (17)  

Objective function 

The objective of the optimization model is minimizing the total charging cost, which is 
calculated using the cost function presented in Equation 19: 

𝑜𝑏𝑗 = min(𝐶𝑡𝑜𝑡) (19) 

𝐶𝑡𝑜𝑡 = (∑ (𝜆𝐺𝑟𝑖𝑑𝑡
 ∙ 𝑃Grid𝑡

+)
2

 

𝑇

𝑡=1

−  ∑(𝜆𝐹𝐼𝑇 ∙ 𝑃Grid𝑡
−)

2
 

𝑇

𝑡=1

 ) (19) 

 

The total charging cost is the sum of the cost of electricity drawn from the grid minus 

the electricity feed back to the grid. Electricity costs are taken into consideration with 

𝑃Grid𝑡
+ , which is multiplied by the variable electricity price 𝜆𝐺𝑟𝑖𝑑𝑡

. Electricity delivered 

back to the grid is included by subtracting 𝑃Grid𝑡
−  multiplied by the Feed-in-tariff 𝜆𝐹𝐼𝑇 . 

Both 𝑃Grid𝑡
+  and 𝑃Grid𝑡

−  are squared to allow for peak shaving. Taking the square of 

𝑃Grid𝑡
+  and 𝑃Grid𝑡

+  is important to penalize very high peaks. The sum over time of load 

with a very high peak and a very low peak and a result with two medium-high peaks 

would result in the same cost. However, when taking the square of 𝑃Grid𝑡
+  and 𝑃Grid𝑡

−  the 

sum over time with the very high peak has a larger cost. Ultimately, motivating the 

optimization model to pick the flatter load profile. 

Bilinear and linear 

The term introduced in Equation 8, although initially seeming to be a linear term 

introduces non-linear characteristics in the optimization problem. It can be considered 

a bi-linear term, which is caused by multiplications of two decision variables (Conrad, 

2008).  This results in the solution of the model being non-convex. Therefore, to find an 

optimum a non-linear solver is required. This can result in long computational times in 

some edge cases, or when there is a large amount of input data. 

Therefore, in the revised algebraic model, the bi-linear term is removed from the model. 

The variables  𝑃𝐺𝑟𝑖𝑑+  and 𝑃𝐺𝑟𝑖𝑑−  are not used, removed from the cost function and 

Equations 8, 9 and are removed. This results in the following cost function: 

𝐶𝑡𝑜𝑡 = (∑(𝜆𝐺𝑟𝑖𝑑𝑡
 ∙ 𝑃𝐺𝑟𝑖𝑑𝑡

)
2

 

𝑇

𝑡=1

) (20) 
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Penalty function 

According to Apostolaki-Iosifidou et al. (2017), charging at lower charging rates can 

result in higher charging costs. The charging efficiency increases with increasing 

charging current. However, the current cost function does not make a distinction 

between charging two EVs at a lower current or alternating charging between two EVs 

at a higher current. This is undesirable because charging with lower values can result in 

lower efficiency, as reported by Apostolaki-Iosifidou et al. (2017). To prevent the model 

from dividing the maximum charging current, resulting in lower charging currents, a 

penalty function is added. This results in the final cost functions as presented in 
Equation 21 and Equation 22, for the bi-linear and linear cost functions, respectively: 

𝐶𝑡𝑜𝑡 = (∑ (𝜆𝐺𝑟𝑖𝑑𝑡
 ∙ 𝑃Grid𝑡

+)
2

 

𝑇

𝑡=1

−  ∑(𝜆𝐹𝐼𝑇 ∙ 𝑃Grid𝑡
−)

2
 

𝑇

𝑡=1

−𝜆Weight ∙   ∑ ∑ (
1

1 + 𝜆𝐺𝑟𝑖𝑑𝑡

 ∙  𝑃𝐶ℎ𝑎𝑟𝑔𝑒𝑡,𝑖
)

2𝑁

𝑖=1

𝑇

𝑡=1

) (21)

 

𝐶𝑡𝑜𝑡 = (∑(𝜆𝐺𝑟𝑖𝑑𝑡
 ∙ 𝑃𝐺𝑟𝑖𝑑𝑡

)
2

 

𝑇

𝑡=1

− 𝜆Weight ∙   ∑ ∑ (
1

1 + 𝜆𝐺𝑟𝑖𝑑𝑡

 ∙  𝑃𝐶ℎ𝑎𝑟𝑔𝑒𝑡,𝑖
)

2𝑁

𝑖=1

𝑇

𝑡=1

) (22) 

 

 The added term increases for high values for 𝑃𝐶ℎ𝑎𝑟𝑔𝑒𝑡,𝑖
 and low values for the price 

𝜆𝐺𝑟𝑖𝑑𝑡
. Ultimately, resulting in a lower value for the total cost. This causes the model to 

prefer charging at higher charging power for each EV. To allow for adjusting the penalty 

function the variable 𝜆Weight is added to the cost function. Various values for this 

variable are tested and compared in Section 5.2. 

The performance of all three cost functions, presented in Equations 20, 21 and 22 are 

compared in section 5.2. In total this results in the following variations of optimization 

models that are simulated, presented in Table 4.4: 

Table 4.4 Tested optimization models and their specifications. 

Optimization model Time sample (Ts) Weight factor (𝜆Weight) 

Bi-linear 15 min - 
5 min - 

Linear 15 min - 
5 min - 

Bi-linear w/ Penalty function 15 min 1 
5 min 1 

Linear w/ Penalty function 15 min 1 
0.6 
0.4 

5 min 1 
0.6 
0.4 

The models are formatted as [model]_[timesample]_[weight]. 
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4.5. Optimization model 
The optimization model is programmed in python using the Pyomo package. The 

optimization model is solved using the iPOPT solver. This solver is chosen since it 

allows for solving non-linear optimization problems (Kawajir et al., 2023). This is useful 

since the initial optimization problem includes a bilinear function, making it non-linear. 

Hardware 

The simulations are run within the Jupyter notebook using the Python 3 IPykernel. The 
hardware specifications of the computer used for the simulations are the following: 

Table 4.5 Hardware specifications of the simulation computer 

Central processing unit (CPU) Intel i7 11800-H @ 2.30 Hz 
Graphics processing unit (GPU) Nvidia Geforce RTX 3080 (Laptop) 
Memory 32 GB 3200 MHz DDR4 
Drive Samsung PM9A1 M.2 SSD 

Computational times 

For all the different optimization models the computational times are collected for later 

comparison. These computational times are received directly from iPOPT. It is called the 

“Total CPU secs in IPOPT (w/o function evaluations)”. For each case, the optimization 

models are run 3 times, collecting the computational time each time. Finally, the 
computational times are averaged. 

PHIL-testbed 

A PHIL-testbed is used in the project to emulate EV charging with hardware. This 

testing was performed at Avans Smart Energy Lab. The testbed allows for running 

simulations with the use of real hardware components. The components on the PHIL-

testbed include a bidirectional DC EV charger, an EV emulator, a multimeter, measuring 

grid voltages and currents and a host computer. The hardware is presented below in 
Table 4.6. 

Table 4.6: The hardware on the PHIL-testbed 

EV emulator Delta Elektronika SM15k 
(PSU) 

DC EV charger PRE Power Developers  
10 kW V2G charger module 
V2 

 

 

 

Figure 4.3: The PHIL testbed at Avans 
SEND Lab 
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The PHIL-testbed is controlled from MATLAB Simulink. Simulink loads the optimal 

current values as calculated by the optimization model in Python. These current values 

are then used as input for an EV battery model in Simulink. The EV battery model 

calculates voltage values for the EV emulator based on SOC. Since this is unknown, 

various values for the SOC should be tested when running the PHIL simulations. The 

current values are directly sent to the EV charger. Finally, the testbed measurements 

are sent back to Simulink and stored. A diagram of the PHIL simulation process in 

Simulink is presented in Figure 4.4.  

 

Figure 4.4: Diagram showing the PHIL simulation process in Simulink 

By using the PHIL-testbed it is possible to increase the accuracy of the optimization 

model. This starts by measuring the energy charged by the EV emulator and the energy 

drawn from the grid. By dividing the energy charged by the EV emulator and the energy 

drawn from the grid the total charging efficiency can be calculated. This efficiency can 

then be used as input for the optimization model. Afterwards, the simulation can be 

rerun. Comparing the values calculated by the model to the values measured at the EV 

emulator and on the grid. This can give an insight into how accurate the optimization 

model is. During testing the maximum current allowed by the current meters on the 

grid was 3 A. Therefore, to stay within the limit of the current meters the maximum 
current was set to 2.8 A in the parameters of the optimization model. 
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4.6. Simulation scenarios 

Increased PV-generated electricity 

Apart from running the optimization model on historic data, the model is tested on 

several simulation scenarios. The first scenario is an increase in PV-generated 

electricity. For example, taking into account that the number of solar panels can 

increase in the future. On the roof of the office of Kropman Breda, 65 solar panels are 

installed with a combined capacity of 16.9 kW. According to Google Earth the roof is 

approximately 556m2. At the moment, about 70 to 100 m2 of the roof is not used for 

solar panels. As visible in Figure 4.5, when comparing an area of 5 by 5 solar panels to 

the free space available, it is assumed that approximately 25 to 32 panels can be placed 

in the available space. This yields an increase in PV-generated electricity of 1.38 to 1.49, 

respectively. 

 

Figure 4.5: The roof of the office with an area of approximately 70m2 in red 

Increased number of EVs 

As the number of EVs continuously grows in the Netherlands, there is a large possibility 

that the number of EVs charging at the office will increase as well. Therefore, EV data 

sets are created with 10 to 20 EVs for simulating optimization modelling with a larger 

EV fleet. The datasets are created by combining historic EV data from various days in 
one table. The datasets can be found in Appendix A. 
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5. Results 
5.1. Data analysis 
During the equinox, in March, there is the largest potential for peak shaving and valley-

filling. The amount of daylight is approximately equal to the amount of darkness 

(NOAA’s National Weather Service, n.d.). This results in a relatively high amount of PV-

generated electricity. However, the outdoor temperatures are still relatively low, with 

an average of 7.3 °C in 2022 (KNMI & de Wijs, 2022). Therefore, there is a high heating 

demand, which depends greatly on the internal solar gain. This can result in a 

fluctuating building load, as visible in Figure 5.1 on Tuesday. Figure 5.1 was drawn for 
the days of 21st to 24th March.  

When looking at the graphs of Wednesday the 23rd of March (in Figure 5.1), EV 

charging took place largely in the morning. Even though there was more PV-generated 

electricity available in the afternoon. This resulted in a large power peak in the morning 

and a valley in the afternoon. Furthermore, on Tuesday no EV charging took place. 

However, when looking at the building load, if EV charging did take place there would 

be a potential for efficiently planning EV charging.  

 

Figure 5.1: Valley-filling and peak-shaving potential in March 

When looking at the graphs in Figure 5.2 for the week of June 19th to June 24th, the 

smart charging potential is less obvious. The amount of PV-generated electricity is high, 

and the building load is low on most days, compared to March and December. 

Furthermore, the EV load profiles have lower power peaks and are more spread out 

during the day. However, the EV loads on Monday and Wednesday could have been 

shifted to when the building load was lower and PV-generated electricity is available, 

assuming the idle time to be longer than the charging time on those days. 
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Figure 5.2: Valley-filling and peak-shaving potential in June 

 

The amount of PV-generated electricity in the winter is very low compared to the 

building load. Nonetheless, as visible in Figure 5.3, there is a potential for peak shaving 

and valley-filling. In the building load, there are both peaks and valleys which can be 

flattened by re-distributing the EV loads.  

 

Figure 5.3: Valley-filling and peak-shaving potential in December 

 



5. Results  
 

26 
 

5.2. Optimization models 
In this section, the performance of the different optimization models, described in 

Section 4.4, is presented.  

5.2.1. Computational times 
Table 5.1, Table 5.2 and  

Table 5.3 show that, overall, the linear optimization models have a shorter 

computational time compared to the bi-linear optimization models. Decreasing the time 

resolution from 15 to 5 minutes increases the computational times of both the bilinear 

and linear optimization models. When looking at the computation times for all three 

dates, the computational times do not necessarily increase more for the bi-linear 

optimization models compared to the linear optimization models. However, since the 

linear optimization models have a lower computational time in general when the 

computational time increases due to a larger amount of input data, the bi-linear 

optimization model has a significantly longer computation time. In some cases, the bi-

linear model can take more than 40 times longer to compute compared to linear models. 

For example, when comparing the bi-linear to the linear optimization models with a 
time resolution of 5 minutes in Table 5.1 and  

Table 5.3. Next to the computational times, the difference Δ and the increase x in 

computational time compared to the baseline bilinear and linear optimization model 

are presented.  

 

Table 5.1 Computational times of different optimization models for March 21st 

Optimization model Computational time (Tc) 
[s] 

Δ x 

Bilinear_15min (baseline) 0.74 - - 

Bilinear_5min 41.05 40.31 55.47 

Bilinear_penalty_15min 0.97 0.23 1.31 

Bilinear_penalty_5min 41.37 40.63 55.91 

Linear_15min (baseline) 0.06 - - 

Linear_5min 0.06 0.00 1.00 

Linear_penalty_15min 0.26 0.20 4.41 

Linear_penalty_5min 0.92 0.86 15.58 
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Table 5.2 Computational times of different optimization models for June 20th  

Optimization model Computational time (Tc) [s] Δ x 

Bilinear_15min (baseline) 0.25 - - 

Bilinear_5min 3.85 3.60 15.41 

Bilinear_penalty_15min 0.30 0.05 1.20 

Bilinear_penalty_5min 4.00 3.75 16.00 

Linear_15min (baseline) 0.02 - - 

Linear_5min 0.07 0.04 3.00 

Linear_penalty_15min 0.05 0.03 2.18 

Linear_penalty_5min 0.27 0.25 12.45 
 

Table 5.3 Computational times of different optimization models for December 12th 

Optimization model   Computational time (Tc) [s] Δ x 

Bilinear_15min (baseline) 0.94 - - 

Bilinear_5min 37.93 36.99 40.35 

Bilinear_penalty_15min 1.26 0.32 1.34 

Bilinear_ penalty_5min 40.09 39.15 42.65 

Linear_15min (baseline) 0.03 - - 

Linear_5min 0.08 0.05 3.12 

Linear_ penalty_15min 0.21 0.18 8.28 

Linear_ penalty_5min 0.66 0.64 26.48 
 

The optimization models with and without the penalty function, have similar 

computational times. When looking at  Table 5.1 and  

Table 5.3, only for the linear optimization models with a time resolution of 5 minutes 

there is a significant increase in the computational time when adding a penalty function. 

However, the computational times are still low compared to the bi-linear computational 

models with a penalty function.  

5.2.2. Control performance 
As discussed earlier in Section 4.4, the optimization model initially showed unwanted 

behaviour when calculating the current for each EV. An example can be seen in Figure 

5.4. The model charges multiple EVs at once. The second graph in Figure 5.4. shows that 

low currents are calculated for some of the EVs. For one of the EVs, the current is 

around 20 A for a long time and lower than 20 A for a shorter time. 



5. Results  
 

28 
 

 

Figure 5.4: EV data on March 21st for bi-linear_15 min optimization model (in the second top graph 
the red line indicates the minimum of 6A) 

In this section only the results of March 21st for the bi-linear optimization model are 

presented. However, this behaviour is seen on all three test dates for both the bi-linear 

and linear optimization models. The figures with the EV data graphs for all test dates 
and both models can be found in Appendix B.  

Penalty function 

Adding a penalty function to the optimization objective results in higher current output 

values for the EVs. In Figure 5.5, for all three EVs higher current values, around 32 A, are 

calculated. Charging of the three EVs takes place alternately rather than at the same 

time. However, for one of the EVs at one time step a current of 6 A is calculated, which is 

the minimum charging current possible. 

The control performance is improved on all test dates for both models. All the EV data 

graphs can be found in Appendix B. 

The time resolution of 5 minutes 

As shown in Figure 5.5, when lowering the time resolution from 15 minutes to 5 

minutes the optimization model continues to calculate high current values.  
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Figure 5.5: EV data on March 21st for bilinear_penalty_15min optimization model 

 

5.2.3. KPIs 
When comparing the bi-linear optimization model with the penalty function to its linear 

counterpart, the performance is not significantly different. From the information in 

Table 5.4, it follows that the SS and SC, all optimization models perform the same on all 

the simulation dates. Except on June 20th, where there is a marginal difference in SS and 
SC between the 15- and 5- minute resolution models.  

As visible in Table 5.5, the reduced peak power value (PPR) for the bilinear and linear 

models without a penalty function are equal on all three simulation dates. However, 

there is difference in performance between the 15- and 5- minute resolution models, 

the latter resulting in a higher PPR in most cases.  On the 20th of June, the PPR for the 

bilinear and linear optimization models is equal.   

Furthermore, on March 21st the optimization models without a penalty function have a 

higher PPR compared to the models with a penalty function. Lowering the weight of the 

penalty function does increase the PPR for March 21st and December 12th.  For March 

21st this increase reaches a maximum of 1.02 kW for a weight (λ_Weight) of 0.6. The 

linear optimization models with penalty function have a higher PPR on the 12th of 
December compared to the bi-linear models with a penalty function. 
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Table 5.4: SS and SC on the three simulations dates 

  Optimization model 
March 21st  June 20th  December 12th  

SS [%] SC [%] SS [%] SC [%] SS [%] SC [%] 

Historic data 15 min 31.1 100.0 37.9 96.0 15.4 100.0 

Bilinear_15min 31.1 100.0 37.9 96.0 15.4 100.0 

Linear_15min 31.1 100.0 37.9 96.0 15.4 100.0 

Bilinear_penalty_15min 31.1 100.0 37.9 96.0 15.4 100.0 

Linear_penalty_15min 31.1 100.0 37.9 96.0 15.4 100.0 

Linear_penalty_15min_0.6 31.1 100.0 37.9 96.0 15.4 100.0 

Linear_penalty_15min_0.4 31.1 100.0 37.9 96.0 15.4 100.0 

Historic data 5 min 31.1 100.0 37.4 96.1 15.4 100.0 

Bilinear_5min 31.1 100.0 37.4 96.1 15.4 100.0 

Linear_5min 31.1 100.0 37.4 96.1 15.4 100.0 

Bilinear_penalty_5min 31.1 100.0 37.4 96.1 15.4 100.0 

Linear_penalty_5min 31.1 100.0 37.4 96.1 15.4 100.0 

Linear_penalty_5min_0.6 31.1 100.0 37.4 96.1 15.4 100.0 

Linear_penalty_5min_0.4 31.1 100.0 37.4 96.1 15.4 100.0 
 

 

Table 5.5 PPR on the three simulation dates 

  Optimization model March 21st June 20th December 12th 

PPR PPR PPR 

Bilinear_15min 16.66 10.41 9.27 

Bilinear_5min 16.96 14.44 10.80 

Linear_15min 16.66 10.41 9.27 

Linear_5min 16.96 14.44 10.80 

Bilinear_penalty_15min 12.13 8.81 5.20 

Linear_penalty_15min 11.75 8.81 5.32 

Linear_penalty_15min_0.6 11.75 8.81 5.98 

Linear_penalty_15min_0.4 12.77 8.81 6.14 

Bilinear_penalty_5min 12.70 13.88 4.36 

Linear_penalty_5min 12.35 13.88 5.93 

Linear_penalty_5min_0.6 12.35 13.88 7.27 

Linear_penalty_5min_0.4 13.15 13.88 7.87 
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5.3. Simulation Scenario’s 

5.3.1. Historic data vs optimization data 
In Figure 5.6, Figure 5.7 and Figure 5.8, the performance of the linear optimization 

model with a time penalty with a weight factor of 0.4 and a time resolution of 5 minutes 

on the three test dates is presented. When comparing the three test dates, it is visible 

that on March 21st there was the largest potential to shift EV loads. This can be 

recognized by the relatively flat EV power and grid power for the controlled data 
compared to the uncontrolled historic data. 

 

Figure 5.6:  Historic data vs optimization data on March 21st for linear_penalty_5min_0.4  

 

On June 20th and December 12th, the EV load and grid power profiles were already close 

to flat. This is also supported by the results for the KPIs, presented in Error! Reference s

ource not found.. On March 21st the PPR is the highest of the three test dates.  
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Figure 5.7: Historic data vs optimization data on June 20th for linear_penalty_5min_0.4  

 

Figure 5.8: Historic data vs optimization data on December 12th for linear_penalty_5min_0.4  
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For all test dates, although the redistribution of the EV load results in a PPR and peak-

shaving overall, the SS and SC are not increased. However, when comparing the historic 

data to the optimization data on a day with a relatively low building load and high PV-

generated electricity, the SS and SC values are impacted. As shown in  Figure 5.9, on July 

6th, the model is able to spread out the EV load over the entire day. Furthermore, since 

on that day, there was a surplus of PV-generated electricity, as visible in Table 5.6, there 

is an increase in the SS and SC when re-distributing the EV load during the day using the 

optimization model. 

 

Figure 5.9: Historic data vs optimization data on July 6th for linear_penalty_5min_0.4  

 

Table 5.6: KPIs of historic data vs optimization data on July 6th 

Optimization model PPR [kW] SS [%] *Δ SC [%] Δ 

Historic data 5 min - 42.3 - 83.6 - 

Linear_penalty_5min_0.4 5.60 48.6 +6.27 96.0 +12.35 
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5.3.2. Increasing the number of EVs 
When comparing the second graphs in Figure 5.6 and Figure 5.10, it is visible that 

increasing the amount of EVs from 3 to 10 results in a larger power peak in the 

morning. As visible in Figure 5.10, the optimization model successfully re-distributes 

the EV loads during the day, flattening the load profile of the EVs. This results in peak 

shaving in the morning and valley-filling in the evening. Furthermore, when looking at 

the results in Table 5.7, it follows that the total charged energy is almost equal between 

the uncontrolled scenario and the optimization model, with only a deviation of around 
2%. 

 

Figure 5.10: Uncontrolled charging of 10 EVs vs optimization model on March 21st 

Table 5.7: Amount of energy charged for 10 EVs  

Optimization model Total EV energy [kWh] Δ 

Input data 330.86 - 

*Uncontrolled  335.49 +4,63 

Linear_penalty_5min_0.4 330.86 - 
*Data artificially created using historic data to resemble uncontrolled charging 

In Figure 5.11, the scenario with 20 EVs is presented, based on the combined EV data of 

various days, as explained in Section 4.6. In this case, two things are noticeable: Firstly, 

the power peaks are higher than compared to the uncontrolled scenario with 10 EVs. 

Secondly, in contrast to the scenario with 10 EVs, the EV loads are more spread out 

during the day. Nonetheless, the optimization model significantly flattens the EV load 

profile. When looking at the total charged energy, in Table 5.8, this is higher than for the 

uncontrolled scenario. However, the deviation is still only around 2%. In this scenario, 
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the amount of energy charged by the optimization model is slightly lower than 

compared to the input EV data. However, this is marginal. 

 

Figure 5.11: Uncontrolled charging of 20 EVs vs optimization model on March 21st 

Table 5.8: Amount of energy charged for 20 EVs 

Optimization model Total EV energy [kWh] Δ 

Input data 712.13 - 

*Uncontrolled  724.35 +12,22 

Linear_penalty_5min_0.4 711.66 -0,47 
*Data artificially created using historic data to resemble uncontrolled charging 

From the information in Table 5.9, it is evident that increasing the number of EVs 

increases the computational time of the model. Increasing the number of EVs from 3 to 

10 increases the computational time 6.4 times and from 3 to 20 EVs increases the 

computational time 16.2 times.  As shown in Table 5.10, when increasing the number of 

EVs the SS decreases. This is caused by the increasing EV load. Furthermore, the PPR 

increases when increasing the number of EVs for these scenarios. 

 

Table 5.9: Computational times for different numbers of EVs on March 21st 

Optimization model Computational time (Tc) [s] Δ x 

Linear_penalty_5min_0.4 (3 EVs) 0.970 - - 

Linear_penalty_5min_0.4 (10 EVs) 7.367 6,397 7.60 

Linear_penalty_5min_0.4 (20 EVs) 17.204 16.234 17.74 
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Table 5.10: KPIs for different numbers of EVs on March 21st 

Optimization model PPR [kW] SS [%] Δ SC [%] Δ 

Historic data 5 min - 31.1 - 100 - 

Linear_penalty_5min_0.4 (3 EVs) 7.91 31.1 - 100 - 

 *Uncontrolled (10 EVs)  17.5 - 100 - 

Linear_penalty_5min_0.4 (10 EVs) 38.74 17.6 +0.1 100 - 

 *Uncontrolled (20 EVs) - 9.7 - 100 - 

 Linear_penalty_5min_0.4 (20 EVs) 43.07 9.9 +0.2 100 - 

* Data artificially created using historic data to resemble uncontrolled charging 

5.3.3. Increasing solar energy and EVs 
In this section, the amount of PV-generated electricity is multiplied by the factors 

described in Section 4.6. As shown in Table 5.12, when increasing the PV for the test 

date March 21st with a factor of 1.38, the overall SS and SC increase. There is no increase 

in the SS and SC for the optimization data compared to the historic data. When 

increasing the PV by a factor of 1.49, there is only a marginal increase in the SS. With the 

increasing amount of PV-generated electricity, the PPR does increase with steps of 

around 1 kW. 

Table 5.11: KPIs for different amounts of PV on March 21st 

Optimization model PPR [kW] SS [%] Δ SC [%] Δ 

Historic data 5 min - 31.1 - 100 - 

Linear_penalty_5min_0.4  13.15 31.1 - 100 - 

Historic data 5 min (PV x1.38) - 42.9 - 100 - 

Linear_penalty_5min_0.4 (PV x1.38) 14.81 42.9 - 100 - 

Historic data 5 min (PV x1.49) - 46.1 - 100 - 

Linear_penalty_5min_0.4 (PV x1.49) 15.47 46.4 +0.3 100 - 

 

When exploring another test data, the 6th of July, the results are different. On the 6th of 

July, the amount of PV-generated electricity was already relatively high compared to the 

building load. As visible in Table 5.12, when increasing the amount of PV-generated 

electricity the SS and SC increase. Contrary to the test date of March 21st, the model 

increases the SS and SC even further when the PV is increased. However, this increase is 
not significantly higher compared to the simulation without an increase in PV.  

Finally, when increasing the number of solar panels and the number of EVs, the SS and 

SC drop both for the uncontrolled data and the optimized data. The increase in SS and 

SC due to the optimization model is reduced as well. The PPR, similarly to the results 
shown in Table 5.10, is increased when increasing the amount of EVs from 3 to 10. 
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Table 5.12: KPIs for different amounts of PV and EVs on July 6th  

Optimization model PPR 

[kW] 

SS [%] Δ SC [%] Δ 

Historic data 5 min - 42.3 - 83.7 - 

Linear_penalty_5min_0.4 5.60 48.6 +6.3 96.0 +12.3 

Historic data 5 min (PV x1.38) - 53.4 - 76.5 - 

Linear_penalty_5min_0.4 (PV x1.38) 3.95 63.3 +9.9 90.7 +14.2 

Historic data 5 min (PV x1.49) - 56.3 - 74.7 - 

Linear_penalty_5min_0.4 (PV x1.49) 3.56 66.7 +10.4 88.4 +13.7 

*Uncontrolled data 5 min (PV x1.38 & 10 EVs) - 23.3 - 93.2 - 

Linear_penalty_5min_0.4 (PV x1.38 & 10 EVs) 38.79 24.0 +0.7 95.2 +2.0 

*Uncontrolled data 5 min (PV x1.49 & 10 EVs) - 24.8 - 92.0 - 

Linear_penalty_5min_0.4 (PV x1.49 & 10 EVs) 39.01 25.9 +1.1 95.0 +3.0 

* Data artificially created using historic data to resemble uncontrolled charging 

5.3.4. Welkom Kropman  
A simulation is performed on one week of Welkom Kropman data and historic load data. 

As shown in Figure 5.12, on most days the EV loads in the optimization model are much 
lower compared to the historic data. Only on Monday, are EV loads similar.  

 

Figure 5.12: Historic data vs optimization model for 9 to 13 January 
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Below, in Table 5.13, the Welkom Kropman EV data as entered by the employees for 

that week is presented. In Table 5.14, the EV data is visible after the requested amount 

of energy has been checked for feasibility. Which is done as described in Section 4.1. It is 

visible that for some of the EVs, the requested amount of energy is greatly reduced by 

the check. For example, on the 13th of January, the requested energy for one of the EVs is 

reduced from 50 to 18.4.  

 

Table 5.13: Welkom Kropman EV data for 9 to 13 January 

ChargerId E_requested T_arrival T_departure 

3 38 09/01/2023 06:45 09/01/2023 16:00 

1 54 10/01/2023 06:55 10/01/2023 14:00 

4 64 10/01/2023 07:00 10/01/2023 11:00 

0 50 12/01/2023 08:50 12/01/2023 11:00 

1 35 13/01/2023 06:45 13/01/2023 14:00 

4 50 13/01/2023 07:25 13/01/2023 10:00 

3 38 09/01/2023 06:45 09/01/2023 16:00 
 

Table 5.14: EV data for 9 to 13 January after the feasibility check 

ChargerId E_requested T_arrival T_departure 

3 38 09/01/2023 06:45 09/01/2023 16:00 

1 51.52 10/01/2023 06:55 10/01/2023 14:00 

4 28.83 10/01/2023 07:00 10/01/2023 11:00 

0 15.33 12/01/2023 08:50 12/01/2023 11:00 

1 35 13/01/2023 06:45 13/01/2023 14:00 

4 18.4 13/01/2023 07:25 13/01/2023 10:00 

3 38 09/01/2023 06:45 09/01/2023 16:00 
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5.4. PHIL-testbed 
A test run is performed using the PHIL testbed. For three dates, the amount of energy 

charged in different stages of the test run is presented in Table 5.15. On the 21st of 

March and 20th of June the amount of energy going into the EV, calculated by the 

optimization model, is higher than the input data. Furthermore, the actual energy as 

measured by the EV emulator is even higher than the energy calculated by the 

optimization model. On December 12th, both the energy going into the EV emulator and 

the energy calculated by the optimization model are lower than the requested amount 

of energy. When looking at Figure 5.13, the test run on the date of December 12th, 

resulted in less current values and charged energy for the EV emulator compared to 

calculated in the model. 

 

Table 5.15: Amount of energy charged at different stages in the PHIL-testbed simulation 

Date Energy EV 
emulator [kWh] 

Energy optimization 

model [kWh] 

Input data energy 
[kWh] 

21-03-2022  3.689 3.418 3.325 

20-06-2022  2.462 2.279 2.217 

12-12-2022  3.170 4.178 4.680 

 

 

Figure 5.13: Charging on December 12th in the optimization model vs EV emulator. 



40 
 

6. Discussion 
6.1. Optimization models 
Compared to linear optimization models, bilinear optimization models generally have 

higher computational times. This can be attributed to the presence of the bilinear 

function, as discussed in Section 5.2.1. When increasing the time resolution of the 

optimization model, the computational time of the bilinear models increases 

significantly compared to that of the linear models. However, despite the longer 

computational time, the performance of the bilinear and linear optimization models, as 
assessed by the KPIs, is very similar. 

The addition of a penalty function to the cost model results in improved control 

performance of the optimization models. This is evidenced by the model calculating 

higher current values for each EV, alternating charging, as opposed to charging EVs 

simultaneously with lower current values. This improvement applies to all optimization 

models. However, in most cases, the PPR decreases when the penalty function is added. 

This may be caused by the optimization model now prioritizing high current values over 

reducing power peaks. 

Overall, all optimization models perform similarly on SS and SC for all three test dates, 

with only the PPR varying per optimization model. The models with a time resolution of 

5 minutes generally have a higher PPR than those with a time resolution of 15 minutes. 

However, this can be caused by the data being resampled to 15 minutes. Since in that 

case the power peaks are reduced due to averaging the power values. The PPR is 

generally lower for models with a penalty function. Reducing the weight of the penalty 

function (𝜆Weight) helps increase the PPR for two of the test dates. For linear models, 

increasing the time resolution is feasible. Computational times remain around 1 to 20 

seconds, even when the number of EVs is increased to 20, which is well below the 5-
minute interval. 

Adding a penalty function to the cost function of the optimization model is crucial since 

charging with lower values results in lower efficiency (Apostolaki-Iosifidou et al., 2017). 

When considering computational times and KPIs, the linear optimization model with a 

time resolution of 5 minutes and a weight factor of 0.4 shows the best performance 
among models with a penalty function. 

6.2. Simulation Scenario’s 
When comparing the historical data with the data from the optimization model, several 

observations can be made. For all three test dates, the SS and SC do not change. 

However, there is a significant increase in the PPR on all test dates. Of the three test 

dates, the largest PPR is observed on March 21st. On June 20th and December 12th, the 

PPR by the optimization model is less. However, when analyzing the impact of the 

model on July 6th, a day with relatively high PV-generated electricity and low building 

load, the SS and SC significantly improve as well. 

Increasing the number of EVs results in a longer computation time, taking 

approximately 7 and 17 times longer for 10 and 20 EVs, respectively. As expected, the 

SS decreases with increasing EV load. The data from the optimization model does not 
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show an increase in the SS. Furthermore, the SC remains at 100% as well. However, 

there is a significant increase in the PPR. Due to the increasing number of EVs, the 

power peaks significantly increase as most EVs charge in the morning. The optimization 

redistributes the EV load during the day, resulting in an increased PPR for each 
increment in EV. 

When increasing the PV generated electricity on March 21st, the SS and SC increased 

according to the historic data. The further increase due to redistributing loads by the 

optimization model is marginal. The PPR increases by 1 to 2 kW when increasing the 

amount of PV and using the optimization model. 

An increase of PV on July 6th, results in an increase of SS and SC for both a factor of 1.38 

and 1.49.  Using the optimization model the SS is increased by 9.9% and 10.3% for a 

factor of 1.38 and 1.49, respectively. This is a further increase of 3.7% and 4.1% 

compared to the initial increase of 6.3%. The SC does show a further increase of 1.3%, 

and 1.8% compared to the initial increase of 12.4% for a factor of 1.38 and 1.49, 

respectively. When increasing the number of EVs as well, the SS and SC increase for 

both PV factors. The influence of the optimization model on the key performance 

indicators (KPIs) is less in this scenario. Compared to the test date of March 21st, the 
PPR is similar for 10 EVs on July 6th. 

Simulation on the week from 9 to 13 January, using the Kropman EV data as input, 

shows a large difference in the amount of energy charged between the historic data and 

the optimization data. When looking at the amount of energy entered in the form by 

employees and as input for the model there is a significant difference. The feasibility 

check reduces the requested amounts of energy on several days, such as on the 10th, 

12th and 13th of January. Furthermore, on Wednesday the 11th of January, there is an EV 
load present in the historic data and no EV data from the Welkom Kropman form.  

6.3. PHIL-testbed 
The results of PHIL-testing showed that a higher amount of energy was charged by the 

EV emulator, compared to both the input energy data and the energy calculated by the 

optimization model. However, on December 12th, both the energy charged by the EV 

emulator and the calculated energy by the optimization model was lower than the input 

energy data. This was since the EV emulator did not receive the same current values as 
those calculated in the optimization model, resulting in lower current values. 

The lower amount of energy calculated by the optimization model may have been 

caused by a flaw in the model, where one charging iteration was lost, leading to less 

energy being calculated than expected from the input data. This issue has been resolved 

in the current model, but it was not fixed during the PHIL testing. Further testing is 
needed with the PHIL-testbed. 

6.4. User Feedback 
When looking at the impact on user convenience of the EV form, the form needs some 

work. Based on the data, not on all days the EV data was collected correctly when 

compared to historic data. Furthermore, employees have reported that filling in the 
form can be tedious every day. 
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7. Conclusion 
How to implement smart charging to shift EV loads, increase the self-use of PV and 

reduce peak loads, without the use of SOC values and EV load predictions? 

The charging controller designed in this research offers a solution to the ever-growing 

peak power loads due to uncontrolled EV charging. Peak power loads due to 

uncontrolled EV charging can be reduced by utilizing an online form for EV charging, 

which collects EV data and can be used as input for an optimization model along with 

building load and PV power data. Since user-specific information is collected through an 

online form, SOC values are not necessary for redistributing EV loads more efficiently. 

What method of smart charging is best applicable to solve the research problem? 

The smart charging method used in this research, optimization modelling, has proven 

successful for planning and controlling EV charging during a workday. By testing 

different variations of the optimization model, the performance has improved. Firstly, 

linear optimization models perform better than bilinear optimization models in terms 

of computational time. If less powerful hardware is used for running the optimization 

models, the computational time is potentially longer. Therefore, it may be better to 

choose the linear optimization model, which has a much lower computational time.  

Furthermore, for the linear optimization models, the computational time remained 

relatively low. Reducing the time resolution allows for running the optimization model 

more often, reducing the time for new EVs to be detected and building load and PV data 

to be updated. 

Secondly, adding a penalty function to the cost function greatly improves the control 

performance. This results in the optimization model alternating charging at higher 

current values compared to without a penalty function. This is preferred since charging 
at higher current results in higher charging efficiency. 

To what extent does the smart charging solution improve energy flexibility, PV self-
use and decrease peak loads? 

Simulation with the final variant of the optimization model showed the following: on the 

main simulation days (the 21st of March, 20th of June, and 12th of December), the PPR 

is significant. If the number of EVs increases at the office in the future, the PPR is 

potentially even greater. If, in the future, the number of EVs increases at the office, the 

PPR is potentially even greater. The SS and SC do not increase on the three main 

simulation days for this case study since the PV production is not changed. However, 

when simulating for a day with higher PV-generated electricity and a lower building 

load, an increase in SS and SC is perceived as well. Therefore, it can be concluded that 
the optimization model allows for peak-shaving and valley-filling. 

Furthermore, the optimization model is versatile. By changing the parameters, such as 

the total charging efficiency, the maximum voltage, power, and current, the model can 

be used for different EV chargers, both for the level 2 AC chargers used at the office of 
Kropman and the DC charger on the PHIL-testbed. 
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In conclusion, this research presents a versatile smart charging controller design based 

on optimization modelling, which successfully redistributes EV loads to allow for peak-
shaving and valley-filling. 

7.2. Recommendations 
Initially, the goal of this research was to test the smart charging controller on the PHIL 

testbed and implement it at the office. However, due to the complexity of the 

optimization problem and practical implementation complications, this was not 

possible. The next step in the research is to run the smart charging controller in real 

time on the PHIL testbed, which will be conducted as a continuation of this work by 

another student. 

The results of the optimization model can be further improved by supplying the model 

with more data. For example, the maximum charging current, maximum power draw, 

and SOC values of the vehicle can be added as input. The maximum current is especially 

useful, as it allows EVs that support higher charging speeds to charge faster than 

currently assumed. This increases the flexibility of the EVs, as both long and short 

charging times are available. Furthermore, it allows for using more power for charging 

to increase the self-consumption of PV-generated electricity when available. The SOC 

values are also useful for providing the model with information when an EV is full, for 

instance when the requested energy content is higher than the remaining empty battery 

capacity. This can shorten the calculated charging time of an EV, increasing flexibility. 

An option for collecting the maximum power draw and charging current is by 

measuring the power output of uncontrolled charging at the beginning of a charging 

session. The maximum charging current and power can then be added to the individual 
EV data as input for the model. 

Additionally, post-processing of the output current values is desired. At the moment, 

current values that are too low are still included in the output values. This can be solved 

by removing current values that are too low and compensating for them. 

Lastly, user behaviour is not taken into consideration in the current model. When a user 

decides to leave earlier than initially entered in the form, it can occur that the EV has not 

been charged at all yet. By prioritizing giving each EV a certain percentage of the 

respective requested amount of energy, the number of occasions where an EV leaves 

without a charge can be reduced. Furthermore, a solution to reducing the tediousness of 

filling in the EV charging form for the Kropman employees can be storing the previously 

entered data. This can potentially reduce the number of inputs to multiple clicks. 
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Appendices  
A. Appendix A: Simulation scenario test data 
Table A.1: Simulation EV data for 10 EVs 

ChargerId E_requested T_arrival T_departure 

0 40.83 21/03/2022 07:30 21/03/2022 15:15 

2 36 21/03/2022 07:45 21/03/2022 14:15 

0 46.74 21/03/2022 07:45 21/03/2022 14:30 

2 16.41 21/03/2022 07:45 21/03/2022 13:00 

3 10.92 21/03/2022 07:45 21/03/2022 16:30 

0 19.81 21/03/2022 07:45 21/03/2022 13:00 

0 46.82 21/03/2022 07:45 21/03/2022 16:00 

0 20.63 21/03/2022 08:00 21/03/2022 17:00 

0 53.67 21/03/2022 08:00 21/03/2022 16:45 

3 39.03 21/03/2022 08:30 21/03/2022 16:45 
 

Table A.2: Simulation EV data for 20 EVs 

ChargerId E_requested T_arrival T_departure 

0 33.0723 21/03/2022 07:30 21/03/2022 15:15 

2 46.5345 21/03/2022 07:30 21/03/2022 17:00 

2 29.8404 21/03/2022 07:30 21/03/2022 17:00 

1 27.6372 21/03/2022 07:45 21/03/2022 13:45 

0 37.8594 21/03/2022 07:45 21/03/2022 14:30 

0 25.1748 21/03/2022 07:45 21/03/2022 17:00 

2 28.1799 21/03/2022 07:45 21/03/2022 15:15 

2 29.16 21/03/2022 07:45 21/03/2022 14:15 

0 37.9242 21/03/2022 07:45 21/03/2022 16:00 

0 16.0461 21/03/2022 07:45 21/03/2022 13:00 

3 8.8452 21/03/2022 07:45 21/03/2022 16:30 

2 13.2921 21/03/2022 07:45 21/03/2022 13:00 

0 43.4727 21/03/2022 08:00 21/03/2022 16:45 

0 16.7103 21/03/2022 08:00 21/03/2022 17:00 

3 31.6143 21/03/2022 08:30 21/03/2022 16:45 

0 45.5787 21/03/2022 08:30 21/03/2022 16:45 

1 29.808 21/03/2022 11:00 21/03/2022 16:00 

0 28.3986 21/03/2022 11:00 21/03/2022 16:30 

0 22.113 21/03/2022 11:00 21/03/2022 16:30 

0 25.1829 21/03/2022 12:15 21/03/2022 16:45 
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B. Appendix B: Control performance 

 

Figure B.1: EV data on March 21st for bi-linear_15min optimization model 

 

Figure B.2: EV data on March 21st for linear_15min optimization model 
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Figure B.3: EV data on June 20th for bi-linear_15min optimization model 

 

 

Figure B.4: EV data on June 20th for linear_15min optimization model 
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Figure B.5: EV data on December 12th for bi-linear_15min optimization model 

 

 

Figure B.6: EV data on December 12th for linear_15min optimization model 
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Figure B.7: EV data on March 21st for bi-linear_penalty_15min optimization model 

 

Figure B.8: EV data on March 21st for linear_penalty_15min optimization model 
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Figure B.9: EV data on June 20th for bi-linear_penalty_15min optimization model 

 

Figure B.10: EV data on June 20th for linear_penalty_15min optimization model 
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Figure B.11: EV data on December 12th for bi-linear_penalty_15min optimization model 

 

Figure B.12: EV data on December 12th for linear_penalty_15min optimization model 
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Figure B.13: EV data on March 21st for bi-linear_penalty_5min optimization model 

 

Figure B.14: EV data on March 21st for linear_penalty_5min optimization model 
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Figure B.15: EV data on June 20th for bi-linear_penalty_5min optimization model 

 

Figure B.16: EV data on June 20th for bi-linear_penalty_5min optimization model 
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Figure B.17: EV data on December 12th for bi-linear_penalty_5min optimization model 

 

Figure B.18: EV data on December 12th for linear_penalty_15min optimization model 
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Figure B.19: EV data on March 21st for linear_penalty_15min_0.4 optimization model 

 

Figure B.20: EV data on March 21st for linear_penalty_15min_0.6 optimization model 
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Figure B.21:  EV data on June 20th for linear_penalty_15min_0.4 optimization model 

 

Figure B.22: EV data on June 20th for linear_penalty_15min_0.6 optimization model 
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Figure B.23: EV data on December 12th for linear_penalty_15min_0.4 optimization model 

 

Figure B.24: EV data on December 12th for linear_penalty_15min_0.6 optimization model 
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Figure B.25: EV data on March 21st for linear_penalty_5min_0.4 optimization model 

 

Figure B.26: EV data on March 21st for linear_penalty_5min_0.6 optimization model 
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Figure B.27: EV data on June 20th for bi-linear_penalty_5min_0.4 optimization model 

 

Figure B.28: EV data on March 21st for linear_penalty_5min_0.6 optimization model 
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Figure B.29: EV data on December 12th for linear_penalty_5min_0.4 optimization model 

 

Figure B.30: EV data on December 12th for linear_penalty_5min_0.6 optimization model 

 


