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Abstract 

EVs are recognized as valuable assets in microgrids since they have a significant energy 
flexibility potential. Smart charging of EVs can reduce the mismatch between energy demand 
and supply. Preferably, detailed user-specific information is utilized to optimally schedule EV 
charging while not compromising the user’s comfort. However, such information is often not 
available in reality. Therefore, this study investigates if data-driven forecasting models can 
overcome the lack of user-specific EV information when applying MPC for smart charging. In 
doing so, spatial effects on the forecasting performance are evaluated in two case studies, 
and multiple data-driven forecasting methods – averaged-driven, XGB, and RF – are 
evaluated. The results show that case studies with larger EV populations are favorable to 
forecast since they are associated with less randomness and more repetitive patterns and 
that RF recursive multi-step forecasting is most suitable considering the trade-off 
performance versus complexity. It is found that the application of RF recursive multi-step 
forecasting in combination with MPC can forecast and control the aggregated EV fleets 
properly without user-specific information. Therefore, an aggregated approach significantly 
improves the applicability of the EMS because the system is independent of EV driver 
cooperation. As a result, the EMS becomes more robust, is not prone to privacy issues, and 
simplifies the optimization problem by creating a single-objective instead of a multi-objective 
optimization problem in which each EV would be considered separately. The promising results 
of this study pave the way to improve the forecasting models for EMSs in further research. 
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1. Introduction 

1.1. Research context 

The awareness of the urgency to mitigate global warming has grown significantly in the 
last decade. In 2015, The Paris Agreement on climate change was adopted by 194 members 
of the UNFCCC aiming to limit global warming well below two degrees Celsius, preferably to 
1.5 degrees Celsius, compared to pre-industrial levels [1]. To achieve this objective, the EU 
member states agreed to reduce GHG emissions by fifty-five percent in 2030 compared to 
1990 and to become carbon neutral in 2050 [2]. This led to the rapid growth of RES world-
wide. In the Netherlands, renewable energy generation grew between 2015 and 2021 by 116 
percent of which solar photovoltaic and wind energy grew with respectively 920 percent and 
138 percent as shown in Table 1.1. The rapid growth of these technologies is essential for the 
sustainability of the electricity mix, however, intermittency of several RES introduces 
challenges to maintaining the stability of the power grid. Especially, the generation of solar 
and wind energy fluctuates significantly due to its dependency on weather conditions and 
seasonality. In 2021, the aggregated solar and wind energy already represented thirty-one 
and twenty-six percent of the total renewable energy generation and the total primary 
electricity consumption respectively [3]. In the same year, a renewed agreement was reached 
by 197 members of the UNFCCC, referred to as the Glasgow Climate Pact, to sharpen targets 
from the Paris Agreement in the near future. A new target is set for the reduction of GHG 
emissions in 2030. Instead of reducing fifty-five percent in comparison to 1990, the Glasgow 
Climate Pact aims to reduce GHG emissions by forty-five percent in comparison to 2010 [4]. 
Therefore, the share of renewable energy will become even more dominant in the Dutch 
electricity mix, which will increase the variability of the energy supply. 

On the demand side of the electricity network, the consumers, new developments arise 
to reduce GHG emissions. The built environment is electrifying by introducing HPs as a 
replacement for traditional gas-fired boilers [5]. Moreover, the mobility sector is electrifying 
by phasing out traditional ICEVs and introducing EVs [6]. In recent years, the adoption of HPs 
and EVs grew exponentially. It is expected that the growth of HPs and EVs will continue up to 
five million and nine million respectively in 2050 [7], [8]. Unfortunately, the energy demand 
of HPs and EVs also has a certain variability [9]. As a result, these developments cause a 
significant increase in power demand and demand variability whereupon the grid is not 
designed. 

The increasing variability on both supply and demand sides makes it more complicated to 
match the energy supply and energy demand. Traditional power plants ideally adapt their 
energy supply, depending on the variable renewable energy generation, to prevent a 
mismatch between the total energy supply and the energy demand. However, slow-
responding power plants, such as coal and nuclear plants, have limited flexibility [10]. 
Therefore, depending on the conditions, undesired measures are sometimes necessary to 
maintain the balance of the power grid. In times with a surplus of renewable energy 
generation, RES are curtailed to cap overproduction. This measure is not desirable since 
potential renewable energy is not harvested. In situations when the energy demand is larger 
than the capacity on the supply side, wholesale customers are compensated for lowering their 
energy demand - also known as DR. These measures are currently inevitable since electricity 
should be used instantly and because energy storage and DSM are still lacking nowadays [11]. 

On a smaller scale, office buildings can be seen as microgrids wherein similar mismatches 
occur between energy supply and demand due to the operation of the building, PV systems, 
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and EVs. In such a microgrid, electricity is supplied by the PV system and the power grid, 
where the office building and the EVs are the consumers. The most remarkable mismatch is 
notable between EV charging and PV generation. EV charging loads often peak in the morning 
due to uncoordinated charging and typical occupancy patterns, whereas PV generation 
mainly occurs in the afternoon. Therefore, the microgrid's power demand is significantly 
amplified in the morning and reduced in the afternoon. These occurrences increase the 
demand variability by increasing the difference in power consumption during on-peak and 
off-peak periods. 

Table 1.1: Development of primary energy sources in the Netherlands [3]. 

Energy source 1990 
[PJ] 

2015 
[PJ] 

2021 
[PJ] 

Δ’90-’21 
[%] 

Δ’15-’21 
[%] 

Coal and coal products 366.9 463.6 235.4 - 35.8 - 49.2 

Crude and petroleum products 1,047.5 1,143.3 1,101.9 + 5.2 - 3.6% 

Natural gas 1,325.0 1,211.8 1,255.6 - 5.2% + 3.6% 

Renewable energy 31.2 158.0 341.4 + 994.2 + 116.1 

Hydro power 0.3 0.3 0.3 N/A N/A 

Geothermal heat 0.0 2.4 6.4 N/A + 166.7 

Ambient energy 0.0 5.7 15.9 N/A + 178.9 

Solar thermal 0.1 1.1 1.2 + 1,000.0 + 9.1 

Solar photovoltaic 0.0 4.0 40.8 N/A + 920.0 

Wind energy 0.2 27.2 64.7 + 32,250.0 + 137.9 

Biomass 30.6 117.3 212.2 + 593.5 + 80.9 

Electricity and heat 31.3 33.1 2.6 - 91.7 - 92.1 

Nuclear energy 38.0 39.2 37.3 - 1.8 - 4.8 

Other energy sources 14.8 45.1 49.5 + 234.5 + 9.8 

Total 2,854.7 3,094.1 3,023.7 + 5.9 - 2.3 

 
Fortunately, EVs can offer significant load flexibility with smart control and thereby 

regulate the power demand of a microgrid, aiming to avoid grid congestion by reducing power 
peaks and increasing the self-consumption of intermittent renewable energy [12], [13]. 
Ideally, EVs can act as BESS where they charge during off-peak periods and discharge during 
on-peak periods. Nowadays, most EVs are limited to unidirectional energy exchange 
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(charging) due to technical limitations. This limitation is caused by the widely used 
unidirectional OBC, which cannot convert energy from DC to AC. This conversion is necessary 
to enable bidirectional energy exchange (discharging) [14]. Nevertheless, smart control of EV 
charging, smart charging, can play a significant role in the field of DSM. Various DSM 
techniques are illustrated in Figure 1.1 of which load shifting is a commonly used technique 
with smart charging. 

 
Figure 1.1: Overview of DSM techniques [15]. 

The load flexibility potential of EVs in microgrids results in an increasing interest in the 
application of MPC for smart charging. MPC is a control technique that is not only based on 
measurements, such as PID control but also considers forecasts to anticipate the future [16]. 
In discrete time, MPC considers a specific control and forecasting horizon – equally sized in 
Figure 1.2 – containing a specific number of instances that depend on the sample time. Based 
on the forecasts, the MPC determines an optimal control input trajectory by solving the cost 
function of a constrained optimization problem within the defined horizon. Only the first 
control input of the trajectory is implemented whereas the others are discarded. After 
implementing the first control input, the new state is measured and the optimization problem 
can be solved for the next instance. Not only the control inputs are repeatedly updated, but 
also the forecasts are updated every instance. The receding horizon principle is often applied 
with MPC. Hereby, the control and forecasting do not decrease in time but only shift in time 
[16]. 

1.2. Research problem 

The goals of the Paris Agreement are not feasible by simply introducing and increasing 
sustainable technologies. Appropriate system integration is necessary for optimal interaction 
between subsystems in microgrids or energy hubs. Understanding the operations of these 
subsystems is key to system integration. In doing so, EMSs are a necessity because they 
provide insights into the operations by collecting and storing historical data. Furthermore, 
EMSs can monitor subsystems in real-time. The combination of historical databases and real-
time monitoring allows for the application of smart control algorithms to optimize the 
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interaction between subsystems. EVs are recognized as controllable subsystems which are 
vital in the transformation of the existing power grid towards a smart grid. To implement 
sophisticated smart charging control strategies, it is essential to have detailed knowledge of 
EV charging behavior. 

Ideally, user-specific information such as arrival time, initial SoC, minimal energy demand 
in kWh, battery capacity in kWh, maximum charging power in kW, and departure time is 
available prior to a charging session. With detailed user-specific information, a smart charging 
controller can optimize EV charging sessions optimally considering the power consumption of 
other subsystems within a microgrid and without compromising users' comfort. Additionally, 
it would be preferable to obtain this information thirty-six or forty-eight hours prior to the 
charging sessions, because it allows a controller to anticipate electricity prices from the day-
ahead electricity market. However, in reality, such detailed information is not available, 
especially not so far in advance. Moreover, commonly used AC-charging protocols do not 
communicate SoC values. Other user-specific information is often not available due to a lack 
of data-collecting systems. Log data, EV current data, transaction data, and power 
consumption data are typically available. Transaction data are summaries of individual 
charging sessions, containing: EV ID, plug-in time, plug-out time, and charged energy. Power 
consumption data is monitored at the individual (charging pile) and at an aggregated level 
and is available in real-time or as historical data. The transaction data and power consumption 
data can be obtained from the CPO or are directly accessible via the relatively new OCPI 
protocol. 

 
Figure 1.2: A discrete MPC scheme [17]. 

Therefore, earlier research done by the authors [18], [19] investigated various data-driven 
techniques, which do not require the cooperation of EV drivers by focusing on actual available 
data, aiming to overcome the lack of detailed user-specific information at workplaces. The 
findings from that research indicated the following: 

• Load profiles are static, which means that they can capture general behavior. 
However, the main disadvantage is their inability to anticipate deviations in the 
presence and energy requirement of individual EVs. These deviations can have a 
significant impact on smaller case studies [18]. 

• Accurate individual EV forecasting is impossible without user-specific information 
[19]. 
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• Individual EV forecasting is affected by disturbances such as arbitrary charging, the 
functioning of the BMS, and zero-inflated data [19]. 

It is expected that data-driven forecasting models should be able to forecast aggregated 
EV charging loads more accurately since less randomness is generally involved in larger 
populations. However, the threshold of the population size to enable accurate forecasting is 
currently unknown. Moreover, it is unknown what kind of data and features are necessary to 
accomplish accurate forecasts and how these forecasts influence controllers that are 
integrated into EMSs, especially the more advanced MPC. 

1.3. Research objective 

Since data-driven forecasting models are not able to accurately forecast individual EV 
charging loads due to lacking presence information and randomness, several topics remain 
unclear and require further investigation. 

The first topic of interest is related to the forecasting performance of ML forecasting 
models at other spatial levels, aiming to forecast the aggregated EV charging load at a 
comparable case study, but with a significantly larger EV fleet. In such a case study, it is 
expected that the presence feature is redundant to forecast the aggregated EV charging load. 
Moreover, a significantly improved forecasting accuracy is expected due to the smaller impact 
of randomness from individual EVs. However, these expectations are not verified yet, thus, 
an investigation is necessary to accept or reject our hypothesis. 

The second topic of interest is related to a comparison between averaged- and ML-driven 
forecasting models, focusing on the trade-off between complexity and performance. In this 
study, averaged-driven forecasting models are characterized as average load profiles per day 
type. Herein, a distinction is made between weekdays and holidays. 

The final aim of this project is to create recommendations about required data, which 
features to use as input for EV charging load forecasting models, and how they affect EMSs 
with the main focus on MPC. 

“What are the effects of data-driven forecasting models on the controlling abilities of 
energy management systems and what are the requirements for the realization of these 
models?” 

To answer the main research question, the following subquestions are formulated to 
divide the problem into more manageable and specific parts: 

• Which set of features and algorithms leads to the most accurate ML-driven EV 
forecasting model? 

• How do ML-driven forecasting models perform in comparison to averaged forecasting 
models, considering the trade-off between performance and complexity? 

• Are spatial effects noticeable when comparing the forecasting performance of small 
fleets with large fleets? 

• What are the requirements to implement a forecasting model into an MPC and what 
are the different effects of the various forecasting models on the MPC? 

Additionally, it is important to state that this research is part of the B4B consortium. B4B 
is a multi-year and multi-stakeholder project where educational institutions and companies 
from the industry collaborate to develop methods to harness big data from smart meters, 
building management systems, and the Internet of Things devices, to reduce energy 
consumption, increase comfort, respond flexibly to user behavior and local energy supply and 
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demand, and save on installation maintenance costs. This research will contribute to work 
package two: "Intelligent energy flexibility control strategies". 

1.4. Research outline 

The remainder of this thesis is presented in Figure 1.3 and is as follows. Chapter 2 presents 
the literature review about the application of forecasting models in MPC. Chapter 3 describes 
the methodology behind the constitution of the forecasting models and the MPC. Chapter 4 
presents the exploratory analysis of the data, the performance of the various forecasting 
models, and the implementation of the forecasting models into the MPC. Chapter 5 discusses 
the limitations and assumptions of this study. Finally, chapter 6, concludes the findings of this 
thesis and provides recommendations for further research. 

 
Figure 1.3: Research outline. 
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2. Literature review 

In the literature, various objectives exist for the application of MPC within the field of 
smart charging. According to the review in [20], the most frequently used objectives are 
related to the maximization of profits, power quality, reliability, share of renewable energy 
sources, load factors, and resiliency and the minimization of operational costs, power losses, 
voltage deviations, and emissions. Despite the different objectives among studies, the 
similarity is the necessity of appropriate EV input data. Therefore, this review will mainly focus 
on the used data, features, and forecasting models that are used to generate input for the 
MPC. 

In [21], they aim to minimize the charging costs of four EVs by applying load shifting with 
MPC. The arrival and departure times are 09:00 and 18:00 respectively and hold for each EV. 
The initial SoC values are assumed for each EV, whereas all four EVs should have an SoC of 
eighty percent at departure. Moreover, the battery capacities and charging powers are 
assumed to be twenty-four kWh and 6.6 kW respectively. The optimization problem can be 
perfectly solved with the assumed user-specific information. The availability of user-specific 
information prior to charging sessions is not realistic and therefore the main limitation of this 
study. 

In [22], they aim to maximize operational revenue while handling high power loads in the 
grid with the application of MPC. Real-world EV charging data from a university campus with 
forty-four charging points is used for the charging demand forecasts. The data consist of the 
requested time, duration, and energy consumption of each charging session from the year 
2019. Initially, the number of charging requests is determined based on week-ahead 
maximum and average values, which are obtained from the historical data. The forecasting 
horizon equals twenty-four hours with a sample time of fifteen minutes. As a result, the 
receding horizon of the MPC contains ninety-six instances. For the first instance, the 
maximum week-ahead number of requests is implemented, whereas the week-ahead 
average number of requests is taken for the other ninety-five instances. After an EV plugs-in, 
it is assumed to charge uncoordinated with a power of 7.2 kW. Using week-ahead maximum 
values is a limitation since it always assumes a worst-case scenario. With average values, 
trends are not immediately visible due to the weight of historical data. The larger the data 
set, the smaller the impact of trends on the average. 

In [23], electricity bills and peak powers are minimized at a hospital with MPC. Real-world 
EV charging data used from the year 2019, containing information about ID, plug-in time, 
plug-out time, and energy consumption. SoC values and battery capacities are unknown, 
therefore, assumptions are made based on backward-engineering. The maximum charging 
power of an EV is based on the average power consumption, which is determined by dividing 
the energy consumption by the connection time (plug-out time minus plug-in time). The 
battery capacity is retrieved from the maximum registered energy consumption. Initial and 
final SoC values are calculated based on the consideration that plug-in times, plug-out times, 
charging powers, and battery capacities are known. With data analytics, it is possible to 
estimate the charging power and battery capacity of individual EVs. However, plug-in times, 
plug-out times, and SoC values are exposed to uncertainty and are difficult to estimate. 
Therefore, the chosen approach is suitable for simulation purposes, but not for real-life 
implementation. 

In [24], the aim is to minimize operational costs at a public parking lot with MPC. Day-
ahead aggregated EV charging loads are determined with the assumption that EVs should be 
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fully charged at departure. To do so, one by ‘H’ vectors are created, where ‘H’ represents the 
maximum number of charging piles. Each instance, the charging pile, contains four values that 
correspond to the plug-in time, initial SoC, battery capacity, and plug-out time. These values 
are determined with probabilistic distribution models. The vector represents only one hour 
of the day, thus, twenty-four one by ‘H’ vectors are created in total to generate day-ahead 
aggregated EV charging loads. When EVs are connected, battery state information such as 
Soc, SoH, voltage, and current is communicated as well as user preferences. The main 
limitations of this study are the large time interval of one hour, the application of probabilistic 
distribution models to create day-ahead charging load forecasts, and the use of SoC values in 
real-time. The utilization of probabilistic distribution models is not desired because they 
assume data sets to have a fixed and stationary underlying distribution. In many real-world 
events, data do not follow a specific distribution, are not stationary, and change over time 
due to seasonality, trends, and external factors. Moreover, probabilistic distribution models 
are not suitable for complex nonlinear forecasting problems. The aforementioned aspects in 
combination with a probabilistic distribution forecasting model can result in poor forecasting 
performance [25]. 

The study [26] aims to limit the impact on the power grid and the costs for customers by 
scheduling EV charging at residences. The optimization problem of individual EVs starts at 
arrival since this research assumes that arrival times cannot be predicted due to randomness. 
The communicated initial SoC, battery capacity, and departure time together with the 
assumption that EVs should be fully charged before departure are used as input for the 
optimization problem. The main limitation of this study is related to the exclusion of EVs that 
arrive in the near future. As a result, the optimization model provides sub-optimal outputs, 
because it only considers the charging loads of present EVs. 

In [27], they aim to minimize the demand variability of a residential area with smart 
charging. To do so, MPC with a receding horizon is applied. The limitations of this study are 
threefold and relate to the data availability, the forecasts, and the considered periods. In this 
study, the initial SoC and final SoC are known at arrival. In a decentralized control system, 
where the EV driver is in control, it is plausible that SoC values are used. However, this study 
focuses on a centralized control system, where an aggregator collects data and controls it on 
an aggregated level. Herein, the availability of SoC values is not likely. Moreover, historical 
data with the addition of randomness are used as forecasts. This forecasting method is not 
viable for real-life implementation, because the added randomness might distort patterns in 
the historical data. Another limitation of this study is related to the inclusion of certain 
periods. Only weekdays are considered since weekend days and holidays are accompanied by 
more uncertainty. 

In [28], a continuous-time MPC is deployed to minimize costs in a power system. Once an 
EV connects, it communicates information about its desired amount of charged energy, 
departure time, and maximum allowable time to delay charging. The availability of user-
specific information prior to a charging session is not realistic since data-collecting systems 
are often lacking. Moreover, future arrivals within the control horizon are considered but are 
based on NHTS in combination with Poisson distributions. In [29], NHTS data with distribution 
models are also used to derive the arrival time, departure time, number of daily trips, and 
distance of each trip from individual EVs. 

In [30], they aim to maximize the revenue for DNOs by charging EVs in low price periods 
without compromising EV drivers’ requirements. The EV charging demand is modeled with 
MCS to deal with the stochastic characteristic of EV charging since real-world data are not 
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accessible. In the MCS, the arrival time, connection time, SoC values, and travel distances are 
determined for each discrete time instance within the horizon. The application of MCS is an 
appropriate method in simulations to proof the concept, but cannot be implemented in an 
EMS. 

Study [31] aims to optimize residential EV charging. EV drivers are required to 
communicate their travel types for the next day. The MPC is obligated to provide a sufficient 
SoC at 06:00 the next day to ensure that the desired travels can be fulfilled. The proposed 
cooperation of EV drivers results in valuable information and might be viable in the residential 
domain, but is often not applicable in real scenarios at other places where data-collecting 
systems are lacking. Study [32] is similar to [31] because both studies aim to provide a 
sufficient SoC to individual EVs in the residential area before 06:00. In contrast to [31], study 
[32] uses probabilistic distribution models to determine the arrival times and initial SoC 
instead of data-collecting systems. 

In [33], a multi-objective optimization model is established for minimizing the 
transmission losses, operating costs, and carbon emissions of multiple microgrid systems. In 
this study, deep learning algorithms are considered to forecast the day-ahead EV charging 
load. Initially, a BPNN-based forecasting model is trained on a data set containing fifteen days 
with an hourly time interval. Additionally, the forecasting performance is improved with the 
introduction of an LSTM-based forecasting model that is used to forecast the errors from the 
BPNN forecasting model. The main limitation of this study is the relatively low time resolution 
of one hour. A higher resolution, e.g. fifteen minutes, is preferred to capture more 
fluctuations in the EV power consumption. 

In [34], they aim to maximize revenue by scheduling EV charging at a workplace parking 
lot that is powered by solar energy and the grid. Connected EVs must communicate their 
arrival time, departure time, and charging requirements to the central controller. Statistical 
distribution models are utilized to estimate the upcoming EVs. The main limitation of this 
study is the use of a probabilistic distribution model as a forecasting model. Additionally, the 
cooperation of EV drivers is required to collect user-specific information to solve the 
optimization problem.  

Other studies [35]–[39], where MPC is not used as a control technique, apply similar 
methods to overcome the lack of user-specific information Studies [35]–[39] also rely on 
probabilistic forecasting models and/or the assumption that user-specific information is 
available to generate input for the controllers. 

In the reviewed literature, several approaches related to EV charging load forecasting are 
observed. User-specific information such as plug-in time, plug-out time, energy demand, SoC, 
battery capacity, and charging power is often used as input for the MPC to deal with individual 
EV uncertainties in the optimization problem. They assume to have perfect forecasts by using 
historical data or collected user-specific information as input. In those cases, it is assumed 
that user-specific information is available prior to a charging session or at the moment an EV 
plugs-in. This allows the controller to optimally control the present EVs. Herein, upcoming EVs 
are not always considered. The upcoming EVs are preferably implemented to avoid sub-
optimal control. To do so, probabilistic distribution models are frequently used to forecast 
the upcoming EVs. In reality, none of the user-specific variables are known in advance. It is 
impossible to deal with individual EV uncertainties without the cooperation of EV drivers and 
user-specific data-collecting systems. Hence, the approaches in existing literature are not 
realistic for real-life implementation Furthermore, studies tend to simplify their simulations 
by excluding periods that are exposed to more uncertainty, such as weekend days and 
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holidays. Another simplification is related to the applied time resolution. Several studies 
utilize hourly intervals, resulting in a decreasing complexity since fewer fluctuations are 
captured. Besides, EVs in residences or residential areas are often used as a case study, 
wherein overnight charging is the most common practice. Overnight charging is associated 
with less uncertainty due to significant idle times, less random behavior of EV drivers, and the 
absence of solar energy generation. Therefore, this study will contribute to the field of energy 
management by providing realistic ML-driven aggregated EV charging load forecasting models 
with a high resolution of fifteen minutes and a forecasting horizon of twenty-four hours by 
utilizing accessible data at workplaces. Complementary, guidelines about the necessary data, 
features, and forecasting algorithms to obtain optimal forecasting will be provided. 
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3. Methodology 

The overall method followed in this project is demonstrated in Figure 3.1 and described 
in the following sections. 

 
Figure 3.1: Stepwise overview of research. 

3.1. Case studies 

In this study, two case studies are considered. The characteristics of both case studies are 
briefly explained in this subchapter.  

Building A 
Building A is an office building in Breda, the Netherlands. It was built in the nineties 

and has an approximate floor area of 1500 square meters. The building can be described as a 
traditional Dutch office building whereby innovative systems are added for scientific purposes 
over the years. Initially, a PV system was introduced with 16.9 kWp and a BESS with a capacity 
of 57.4 kWh and a maximum (dis)charging power of 18 kW. Since 2020, two AC level II 
charging piles are operational with each two charging points. The EV chargers are connected 
to three-phase with an amperage of thirty-two and a voltage of 230 V. This results in a 
maximum charging power of 22 kW (3 * 32 * 230 = 22,080 W = 22 kW). The maximum charging 
power in the case study equals 44 kW. An overview of the present system with its associated 
data flows is presented in Overview case studies. 

Building B 
Building B is an office building in Utrecht, the Netherlands. It was built in the seventies 

and has an approximate floor area of 85,000 square meters. In the last fifteen years, the office 
building is completely electrified by introducing ATES, HPs, and PV systems. Furthermore, a 
green parking lot is realized with a local DC-grid. Currently, there are eighty-five AC level II 
charging piles with each two charging points. The charging piles have comparable 
characteristics to the charging piles from Building A. The 5,000 square meters of PV with 940 
kWp and the BESS with a capacity of 173 kWh and maximum (dis)charging power of 180 kW 
are connected to the local DC-grid. The benefit of the local DC-grid is the increased efficiency 
by avoiding DC/AC transformation losses. The number of AC charging points will be extended 
from 170 to a total of approximately 450 in the future. From the 450 charging points, sixty-six 
DC level III charging points will be connected to the local DC grid. An overview of the present 
system with its associated information flows is presented in Overview case studies. 
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3.2. Data acquisition 

The relatively new OCPI protocol enables bi-directional communication between the 
back-end of the CPO and the SCSP as illustrated in Figure 3.2. The SCSP, often a third party 
that is also in control of the EMS, can obtain data from the EMS with HTML or RPC calls. 
Moreover, the OCPI protocol allows the SCSP to send control inputs and predefined charging 
profiles toward the EVSE at individual or at busbar level. In this study, the OCPI is only used 
as a data-collecting mechanism. Aggregated EV power consumption data are used in both 
case studies for the constitution of the EV charging load forecasting models. 

The aggregated EV power consumption of Building A is measured with an interval of eight 
minutes, whereas Building B has a higher resolution of one minute. The EV charging data from 
Building A are collected at individual charging pile levels, whereas the EV charging data from 
Building B are collected at the busbar level. To enable a fair comparison between the case 
studies, EV charging data from both buildings are considered from 01-03-2022 until 13-11-
2022. Data before 01-03-2022 is not considered due to the influence of Covid pandemic 
measures The statements about the data acquisition are visually supported in Calendar plots. 
In addition to the power consumption data, transaction data is used, covering the same 
periods, to extract the number of connections. transaction data is a summary of charging 
events, containing information about the plug-in time, plug-out time, and charged energy. 
However, only the plug-in time and plug-out time are utilized to determine the number of 
connections for each fifteen minutes time interval. EV arrivals and departures are rounded 
towards the first quarter of the hour. 

 

Figure 3.2: EV charger communication and data flow [40]. 

Building B is a significant office building, which makes it more complicated to determine 
the building load instantly. As shown in Overview case studies, no energy or power meter 
captures the total building load. The building load is divided over eight transformers. 
Therefore, the building load at each transformer can be derived by subtracting PV generation, 
EV charging, and BESS (dis)charging from the measurements at the transformer level. The 
total building load equals the summation of the building loads at the transformer level. 
Initially, power consumption data was used, however, negative building loads were 
sporadically noticeable. Buildings cannot have a negative power consumption, thus, the 
power consumption data is subjected to discrepancies. These discrepancies in the data are 
probably caused by the application of different measurement devices in combination with the 
variation in data resolutions among the measurement devices. Therefore, energy 
consumption data with an hourly time interval is used to avoid data discrepancies. The hourly 
resolution is not desirable since it captures fewer fluctuations, however, it is the best available 
alternative. Energy consumption data from the last five years are analyzed to find a suitable 
period for the development of the building load forecasting model. Significantly lower energy 
consumption is noticeable during weekends in the years 2018 and 2019 as illustrated in 
Calendar plots. Moreover, lower energy consumption is visible in 2020 and the first half of 
2021, which can be explained by the Covid pandemic and malfunctioning of energy 
measurement devices. Therefore, energy consumption data used from the period 01-10-2022 
until 31-12-2022 is suitable. 

Additionally, weather data is obtained from KNMI and Solargis with time intervals of one 
hour and fifteen minutes respectively. Both data sets contain the following features: GHI and 
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TEMP [41], [42]. The unit for GHI differs between the KNMI and Solargis data. GHI values from 
the KNMI data are transformed to make them compatible with Solargis data. In general, 
Solargis data is preferred due to its higher time resolution and more representative unit for 
GHI. However, the use of KNMI data is inevitable since the historical Solargis data at Building 
B starts on 28-10-2021. Therefore, KNMI weather data is utilized to overcome the lack of 
Solargis data in October 2021.  

3.3. Averaged-driven forecasting models 

The averaged forecasting models are very simplistic in this study. This method can be seen 
as a quick-and-dirty approach to forecast future EV charging loads. The models solely use 
historical EV charging data for their development. The historical EV charging data set is initially 
checked and processed to handle discrepancies in the data sets. Missing values are located 
and replaced by the linear interpolation method. It should be noted that the replacement of 
missing values is limited to sixteen consecutive values. If there are more than sixteen 
consecutive missing values, interpolation is not performed due to high uncertainty. The 
threshold of sixteen is chosen arbitrarily. As a result, missing values could remain in the initial 
data set. The initial data set is resampled to fifteen minutes time intervals to ensure a 
complete index, similar time intervals, and similar measurement times. The applied 
resampling method cannot operate with missing values. Therefore, the remaining missing 
values from the initial data set are dropped by default. The resampled data set is checked 
again for missing values because the index from the initial data set could be incomplete. 
Missing values are replaced according to the same interpolation method, whereas the 
remaining missing values are ultimately dropped. The pre-processed data set is split into a 
train and test set with a size of eighty and twenty percent respectively. The day of the week 
and time of the day features are added as columns to the train data set and are based on the 
datetime index. Weekdays are represented with values from zero until six, where zero 
represents Mondays and six represents Sundays. Additionally, the number seven is 
incorporated to represent holidays. The identification of holidays is based on a Python 
package that contains dates from Dutch holidays. The train data is pivoted to obtain the 
required data structure that consists of ninety-six rows and eight columns. The rows represent 
the time of day with an interval of fifteen minutes and the columns represent the weekdays 
and holidays. Each value in the data frame represents the average value at a specific time of 
the day on a specific weekday or holiday. Therefore, each column in the data frame represents 
the average load profile for a specific weekday or holiday. The development of the forecasting 
model is completed with the constitution of load profiles per day type. Forecasts are 
generated by adding load profiles in the correct order. To do so, an additional datetime series 
is created with a daily resolution to allow iterations for day-type identification. Averaged-
driven forecasts are generated by appending load profiles to an empty series in chronological 
order based on the corresponding day types. 

3.4. Machine learning driven forecasting models 

In this subchapter, the process and used methods for the constitution of ML-driven 
forecasting models are explained in detail. The process is illustrated in Figure 3.3. 
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Figure 3.3: Stepwise process to constitute ML-driven forecasting models. 

Data-preprocessing 
Initially, data sets are checked for missing values and replaced with linear interpolation if 

present. A constraint is added to the interpolation procedure. When the number of 
consecutive missing values exceeds sixteen, interpolation is not performed to avoid 
unrealistic interpolation. Then, the data sets are resampled to fifteen minutes time intervals 
to equalize their time intervals and measurement times. Herein, missing values are dropped 
by default since the resampling method cannot handle missing values in data. After 
resampling, missing values are re-evaluated and processed according to the same method as 
described above. The cleaned data is enriched with features to enhance the forecasting 
performance. The feature selection is based on findings from earlier research [19] and 
contains four categories, namely temporal features, (holiday and weekend) dummies, 
weather features, and lag features. This study does not use weekend dummies, because 
temporal features, such as the week of the day, can distinguish work days from weekend days. 
Relevant lag features are initially unknown, thus, the ACF is used to find the most significant 
lag variables. The ACF compares the correlation between points ‘i’ and ‘i-k’, where ‘k’ 
indicates the number of lags. A value between zero and one indicates a positive correlation, 
whereas a value between zero and minus one indicates a negative correlation. The closer a 
correlation value approaches (minus) one, the stronger the correlation. Features with strong 
correlations are valuable for forecasting performance. The ACF results for the various data 
sets can be found in Evaluation of ACF and multicollinearity Furthermore, it is desirable to 
evaluate multicollinearity among features to eliminate similar performing features. 
Multicollinearity means that variables are not independent and influence each other which 
can affect the robustness of the forecasting model. The effect of multicollinearity can be 
described as follows: ‘’Multicollinearity practically inflates unnecessarily the standard errors 
of the coefficients. Whereas, increased standard errors in turn mean that coefficients for some 
independent variables may be found not to be significantly far from zero. In other words, by 
overinflating the standard errors, multicollinearity makes some variables statistically 
insignificant when they should be significant. Without multicollinearity, those coefficients 
might be significant’’ [43]. To evaluate multicollinearity among variables, the VIF is 
introduced. The VIF measures the ratio between the variance for a given regression 
coefficient with only that variable in the model versus the variance for a given regression 
coefficient with all variables in the model. The VIF can be calculated according to Equation 1. 
A VIF value of one indicates no multicollinearity, a VIF between one and five indicates 
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moderate multicollinearity and a VIF above five indicates high multicollinearity that may be 
problematic. By removing the feature with the highest VIF, the VIF of other features can drop 
significantly [43], [44]. Therefore, the VIF analysis is an iterative process. Results of the VIF 
analysis can also be found in Evaluation of ACF and multicollinearity. 

𝑉𝐼𝐹𝑖 =
1

1 − 𝑅𝑖
2 Equation 1 

Where: 
VIFi = variance inflation factor of a specific feature 
R2

i = R2 value of a specific feature 

The final step of data-preprocessing is to split data sets into train and test data with a size 
of eighty and twenty percent respectively. The purpose of the train/test split is to use train 
data for model development, whereas the ‘unseen’ test data is used to validate the 
forecasting performance.  

Model development 
The forecasting algorithms XGB, RF, and MLP-ANN are evaluated in [19]. These three 

algorithms are categorized as black-box models. The drawback of black-box models is the less 
transparent interpretability. Feature importance is a method to explain the functioning of 
these models by assessing the contribution of individual features to the forecasting 
performance. Tree-based models, such as XGB and RF, have built-in feature importance 
modules, whereas MLP-ANN cannot intrinsically assess feature importance. Other methods 
should be used to evaluate the feature importance of deep learning models such as MLP-ANN 
[45]. Therefore, this study only focuses on XGB and RF.  

XGB is a relatively new ML algorithm. XGB is an ensemble learning method by 
constructing a multitude of DTs. The DTs are trained sequentially, where DTs consider the 
forecasting error of the previously trained DT. This method is known as boosting and improves 
the forecast at each DT by reducing bias [46]. The advantages of this algorithm are its fast 
computations, the fact that feature scaling is not required, and the inclusion of regularization 
parameters to avoid overfitting. On the other hand, XGB has a lot of hyperparameters, as 
shown in Table 3.1, which results in an intensive and more complex hyperparameter 
optimization [47]. 

The RF algorithm is also an ensemble learning method by constructing a multitude of 
DTs. Each DT generates a forecast. In regression, the output of RF is determined by averaging 
the forecasted values from the DTs, also known as bagging [46]. The advantage of this 
algorithm is its generally great performance by combining weak individual DTs, its robustness 
for overfitting by reducing variance with bagging, its robustness to outliers, and the fact that 
feature scaling is not required. The main drawback is the relatively long computational time 
in comparison to DTs, where only one tree is trained [48], [49]. However, the computational 
time of RF is still fast in comparison to other ML algorithms. The tunable hyperparameters are 
shown in Table 3.2. 
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Table 3.1: XGB hyperparameter selection and description [47]. 

Feature Default  Limit Description 

learning_rate (eta) 0.3 (0,1] Shrinks feature weights to make the 
boosting process more conservative. 
Lower values result in a more conservative 
model. 

n_estimators 100 (0,∞] The number of gradient-boosted trees. 
Equivalent to the number of boosting 
rounds. 

max_depth  6 (0,∞] Maximum depth of a tree. Increasing this 
value will make the model more complex 
and more likely to overfit. 

min_child_weight 1 [0,∞] The minimum sum of instance weight 
needed in a child. The larger 
min_child_weight is, the more 
conservative the algorithm will be. 

gamma 0 [0,∞] Minimum loss reduction is required to 
make a further partition on a leaf node of 
the tree. The larger gamma is, the more 
conservative the algorithm will be. 

subsample 1 (0,1] The ratio of the training instances. It 
means that XGB would randomly sample 
the specified ratio of the training data 
before growing trees, which will prevent 
overfitting. Subsampling will occur once in 
every boosting iteration. 

colsample_bytree 1 (0,1] The subsample ratio of columns when 
constructing each tree. Subsampling 
occurs once for every tree constructed. 

lambda 1 [0,∞] L2 regularization term on weights. 
Increasing this value will make the model 
more conservative. 

alpha 0 [0,∞] L1 regularization term on weights. 
Increasing this value will make the model 
more conservative. 

 
For each forecasting algorithm, hyperparameters are selected and optimized to 

enhance the forecasting performance. XGB and RF are widely applied forecasting models, 
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however, the use of default ML models or ML models from earlier research might not be 
representative in this study due to case-specific data sets. Thus, hyperparameters of the 
models should be optimized for our data sets to ensure appropriate and accurate forecasting 
models. An overview of the most important hyperparameters with their default values, limits, 
and descriptions is provided for each ML model in the tables below. 

Table 3.2: RF hyperparameter selection and description [48]. 

Feature Default 
value 

Limit Description 

n_estimators 100 (0,∞] The number of trees in the forest. 

max_depth None (0,∞] Maximum depth of a tree. Increasing this 
value will make the model more complex 
and more likely to overfit. 

min_samples_split 2 [1,∞] The minimum number of samples required 
to split an internal node. 

min_samples_leaf 1 [1,∞] The minimum number of samples required 
to be at a leaf node. This may have the 
effect of smoothing the model, especially 
in regression. 

max_features ‘auto’ ‘auto’, 
’sqrt’ 

The number of features to consider when 
looking for the best split. 

Bootstrap False False, 
True 

Whether bootstrap samples are used 
when building trees. If False, the whole 
dataset is used to build each tree. 

 
After the hyperparameter selection, a range of values should be assigned to each 

hyperparameter. These initial ranges will be determined based on similar studies and will be 
adjusted iteratively with hyperparameter optimization. There are two basic methods for 
hyperparameter optimization: GridSearchCV and RandomizedSearchCV. The GridSearchCV 
method evaluates all possible combinations for the hyperparameters, resulting in an 
exponentially increasing number of combinations when more hyperparameters or values are 
added. RandomizedSearchCV can find an appropriate combination of hyperparameter values 
for the hyperparameters based on random selection and a predefined number of iterations. 
RandomizedSearchCV is preferred instead of GridsSearchCV, because of the significant 
reduction in computational time without compromising on performance [50]. Furthermore, 
cross-validation is incorporated in RandomizedSearchCV and is defined as five splits with five 
repeats as illustrated in Figure 3.4. This means that train data is split differently among the 
five splits with sizes of respectively eighty and twenty percent. Cross-validation aims to avoid 
overfitting by continuously using a different fold as test data. Therefore, the 
RandomizedSearchCV can find a suitable set of hyperparameter values based on twenty-five 
random combinations (five splits times five repeats).  
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Figure 3.4: Cross-validation with RandomizedSearchCV [51]. 

 Previous research [19] focused on single-step forecasting models. In real-time, single-
step forecasting can only forecast the next instance. Therefore, this method is limited and not 
suitable for the generation of MPC input data since MPC considers a certain forecasting 
horizon. Multi-step forecasting is explored to overcome this issue. Two multi-step forecasting 
techniques are investigated, namely recursive multi-step forecasting and direct multi-step 
forecasting. 

 The principle of recursive multi-step forecasting is the use of lags to forecast future 
values from a specified horizon, with length ‘H’, by iterating over the data as shown in Figure 
3.5. The number of lags is predefined and remains constant over time, also known as a 
receding horizon. The first step is forecasted with the use of historical data only. After the 
first step, the previously forecasted value is fed back to forecast the next value. Over time, 
the number of forecasted values increases in the set of lags in comparison to historical. The 
use of forecasted values seems to be a reasonable representation of unknown future values. 
However, the use of these approximated values results in an accumulation of errors [52]. 

 
Figure 3.5: Recursive multi-step forecasting [53]. 

 Direct multi-step forecasting also considers a predefined and constant forecasting 
horizon with a length of ‘H’. In contrast to recursive forecasting, direct multi-step forecasting 
only uses historical data to forecast future values as illustrated in Figure 3.6. In each iteration, 
an ‘H’ number of separate forecasting models are trained, aiming to forecast one step from 
the forecasting horizon. Herein, the forecasting is receding and remains constant. The benefit 
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of this method is the avoidance of accumulation errors by only using historical data. A 
disadvantage of direct multi-step forecasting is related to the increasing complexity and its 
associated longer computational time [54]. 

 
Figure 3.6: Direct multi-step forecasting [53]. 

 The Skforecast Python library is utilized in this study to ease the use of scikit-learn 
regressors as multi-step forecasters [55]. The scikit RandomForestRegressor is used as 
regressor in this study since it outperformed XGB with single-step forecasting in previous 
research [19]. Initially, the RandomizedSearchCV method, as described earlier, is utilized for 
the hyperparameter optimization of the RandomForestRegressor from the multi-step 
forecasting models. Three levels of optimization are assessed for the recursive and direct 
multi-step forecasting methods as presented in Table 3.3. In addition, the lags ninety-six and 
672 are assessed among the proposed forecasting models. In total, twelve model 
configurations are evaluated. 

Table 3.3: Overview of forecasting methods and their level of optimization. 

Model configuration Description 

REC1 Default recursive multi-step forecasting model 

REC2 Recursive multi-step forecasting model with optimized 
hyperparameters 

REC3 Recursive multi-step forecasting model with optimized 
hyperparameters and trained with exogenous variables. 

DIR1 Default direct multi-step forecasting model 

DIR2 Direct multi-step forecasting model with optimized 
hyperparameters 

DIR3 Direct multi-step forecasting model with optimized 
hyperparameters and trained with exogenous variables. 
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3.5. Forecasting performance evaluation 

An often-forgotten aspect in the evaluation of model performance is the selection of 
appropriate error metrics. Not all error metrics are suitable for specific situations. For 
example, EV charging data are intermittent, meaning that the charging power is not 
continuous. As a result, the data sets contain zero values. The presence of zero values has 
negative implications for relative error metrics, such as MAPE, because they are not able to 
quantify the error since zero division is not allowed. For that reason, this study uses MAE as 
shown in Equation 2. MAE is an absolute error metric that is useful to compare forecasting 
performances within the same study. Furthermore, the traditionally used RMSE is modified 
to the NRMSE. Normalization aims to enable comparisons among case studies with different 
magnitudes. Normalization is achieved by dividing the RMSE by the subtraction of the 
minimum actual value from the maximum actual value as shown in Equation 3. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝐹𝑖 − 𝐴𝑖| Equation 2 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

(𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛)
 Equation 3 

Where: 
A = actual value 
Amin = minimum actual value 
Amax = maximum actual value 
F = forecasted value 

As already mentioned, black-box forecasting models are more difficult to interpret. 
Interpretability is essential to improve the forecasting models and to justify decisions toward 
stakeholders. Beforehand, it is unknown how a set of features will affect the forecasting 
performance. Therefore, feature importance evaluation is necessary to find the best trade-
off between model complexity and performance and to gain knowledge about the 
interpretability of the forecasting model. Several features might be irrelevant or detrimental 
to the learning process. Python has several packages for the evaluation of the feature 
importance, such as permutation feature importance and SHAP feature importance [56], [57]. 
However, this study uses built-in feature importance methods that are available for RF and 
XGB. It should be noted that this study primarily focuses on performance instead of 
complexity since the number of features is relatively low. 

3.6. Model predictive controller 

In this study, an MPC is created with the application of Pyomo. Pyomo is a Python-based 
open-source collection of software packages for formulating optimization models [58]. The 
fundamental mathematical equations of the MPC are based on research [59]. The objective 
is to minimize the interaction between the microgrid and the power grid. Herein, the power 
consumed by the microgrid or the power delivered to the grid can be defined as Pgrid, which 
is the power summation of all transformers from Building B as shown in Equation 4. Building 
loads, PV generation, and EV charging are considered at each transformer as shown in 
Equation 5. An optimal situation is accomplished when Pgrid = 0. This would imply that power 
is not extracted from the grid nor delivered to the grid, thus completely self-sufficient. Pgrid < 
0 implies an over-production of solar power and Pgrid > 0 implies a larger power consumption 
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of the building and EVs than the PV generation. Therefore, a quadratic cost function is created 
to encounter negative power values at times of over-production and to penalize large peaks 
more severely. As a result, it becomes more desirable to have a lower power consumption 
during a longer period than a high power consumption during a short period. The defined cost 
function is mathematically formulated in Equation 6. 

𝑃𝑔𝑟𝑖𝑑 = ∑ 𝑃𝑡𝑟𝑖

𝑖∈𝑆𝑡𝑟

 Equation 4 

𝑃𝑡𝑟𝑖
= 𝑃𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑖

+ 𝑃𝑝𝑣𝑖
+ 𝑃𝑒𝑣𝑠𝑖

 Equation 5 

𝑚𝑖𝑛 𝐽 = ∑ 𝑃𝑔𝑟𝑖𝑑
2

𝑁

𝑛=1

 Equation 6 

MPC cannot operate properly without specified constraints. The EV charging power (Pevs) 
is the controllable load and cannot exceed the hard constraints related to the physical 
limitations of the hardware capacity, defined as Pevs,min,hard, and Pevs,max,hard1. The minimum EV 
charging power equals zero, because EV discharging is currently not possible, whereas the 
maximum EV charging power is limited to 1,200 kW as presented in Equation 7 and Equation 
8. An additional hard constraint is introduced to set a realistic maximum charging power that 
corresponds to the number of connected EVs, which is defined as Pevs,max,hard2. This constraint 
can vary every time step - fifteen minutes - depending on changes regarding the connected 
EVs. The maximum charging power is determined by multiplying the forecasted number of 
connections with the median charging power as shown in Equation 9. As a result, the control 
input, u(t), should be larger than zero and smaller than the normative maximum power 
constraints (Equation 10). Since user-specific information, such as energy demand, is lacking, 
it is important to define another method to ensure that a minimum amount of energy is 
delivered to the aggregated EV fleet. It is assumed that a similar amount of energy should be 
provided as it would be with uncontrolled charging. Therefore, the actual supplied energy to 
the EVs should be equal to or larger than the forecasted energy demand considering a daily 
horizon (Equation 11). Herein, the forecasting model should be solely trained with data prior 
to the MPC implementation to mimic uncontrolled charging. The power demand forecast is 
executed once a day at midnight and should be fulfilled between midnight and tau. In this 
study, tau is considered as five o’clock in the afternoon. To ensure that the energy 
requirement is reached at time tau, the already supplied energy and the remaining energy 
demand are monitored in real-time as shown in Equation 12. The sum of supplied energy and 
remaining energy should be equal throughout the day. Only the proportions between the 
variables are changing. The remaining energy will decrease throughout the day, while the 
supplied energy will increase. 

𝑃𝑒𝑣𝑠,𝑚𝑖𝑛,ℎ𝑎𝑟𝑑 ≥ 0 Equation 7 

𝑃𝑒𝑣𝑠,𝑚𝑎𝑥,ℎ𝑎𝑟𝑑1 ≤ 1,200 Equation 8 

𝑃𝑒𝑣𝑠,𝑚𝑎𝑥,ℎ𝑎𝑟𝑑2 ≤ 𝑁̂𝑒𝑣𝑠 ∙ 𝑃𝑒𝑣,𝑚𝑒𝑑𝑖𝑎𝑛 Equation 9 
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𝑃𝑒𝑣𝑠,𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑃𝑒𝑣𝑠,𝑚𝑎𝑥,ℎ𝑎𝑟𝑑2(𝑡) ≤ 𝑃𝑒𝑣𝑠,𝑚𝑎𝑥,ℎ𝑎𝑟𝑑1 Equation 10 

∑ 𝑃̂𝑒𝑣𝑠 ∙ 𝑇𝑠

𝜏

𝑇00:00

≤ ∑ 𝑃𝑒𝑣𝑠 ∙ 𝑇𝑠

𝜏

𝑇00:00

 Equation 11 

∑ 𝑃𝑒𝑣𝑠 ∙ 𝑇𝑠

𝜏

𝑇00:00

= ∑ 𝑃𝑒𝑣𝑠 ∙ 𝑇𝑠

𝑇0

𝑇00:00

+ ∑ 𝑃̂𝑒𝑣𝑠

𝜏

𝑇0

∙ 𝑇𝑠 Equation 12 

Machine learning-driven forecasting models are used to forecast disturbances. The 
building load, PV generation, and the number of EV connections are considered disturbances. 
The PV generation forecasts are obtained from Solargis, an external party with advanced 
satellite technology to forecast cloud motion to enhance solar power forecasts. The 
forecasting model of the EV charging load is only trained on historical data containing 
uncontrolled charging events. Therefore, the model can forecast uncontrolled EV charging 
loads - even when the EV charging is already controlled - because the model is trained with a 
lag feature related to the number of connections and not the EV power. The forecasting 
models consistently provide day-ahead forecasts with a time interval of fifteen minutes. The 
day-ahead forecasts are updated every fifteen minutes according to the receding horizon 
principle to obtain optimal real-time forecasts. 

The functioning of the MPC should be evaluated with appropriate KPIs. Two widely 
applied KPIs in the field of energy flexibility are selected [60]. PPR focuses on the absolute 
power peak reduction within a daily horizon. PPR is determined by subtracting the maximum 
power peak in the controlled scenario from the maximum power peak in the uncontrolled 
scenario as shown in Equation 13. PPRP also considers power peak reduction within a daily 
horizon but in relative terms instead of absolute as presented in Equation 14. 

𝑃𝑃𝑅 =  𝑃𝑝𝑒𝑎𝑘,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 − 𝑃𝑝𝑒𝑎𝑘,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 Equation 13 

𝑃𝑃𝑅𝑃 =  1 −
𝑃𝑝𝑒𝑎𝑘,𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑃𝑝𝑒𝑎𝑘,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑
 Equation 14 
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4. Results 

4.1. EV charging load forecasting models Building A 

In previous research [19], ML-driven forecasting models are created to forecast the 
aggregated EV charging load at Building A. The obtained forecasting performance was not as 
well as desired. The poor forecasting performance might be enlarged by Covid because the 
utilized data in [19] cover the period from 16-11-2020 until 31-01-2022. Therefore, this study 
re-evaluates the aggregated EV charging load forecasting models with post-Covid data. 
Additionally, a more simplistic averaged-driven forecasting model is created to compare with 
ML-driven forecasting models. The comparison aims to find the best trade-off between 
performance and complexity. 

The aggregated EV power consumption is presented in a heatmap to obtain insights about 
the charging loads throughout the days in the data set. According to the heatmap in Figure 
4.1, EV charging regularly starts around eight o’clock in the morning. Despite the renewed 
data and regularity in start time, a significant diversity in power consumption and end times 
can be observed. The dominant randomness is the greatest challenge for the forecasting 
models to deal with. 

 
Figure 4.1: Heatmap of aggregated EV power consumption Building A. 

The forecasting performances of the various models are visually presented in Figure 4.2. 
The inability of the forecasting models to forecast the largest power peaks is immediately 
noticeable. The underestimation of these power peaks is probably caused by their sporadic 
occurrences. The forecasting models do not expect these high charging loads due to 
misleading lag features. There is not only the tendency to underestimate the large power 
peaks but also to forecast a certain charging load, while in reality there is no consumption as 
illustrated in Figure 4.3. The XGB forecasting model even forecasts negative power 
consumption, which would indicate EV discharging. However, the bi-directional energy 
exchange is currently not possible at Building A. Nevertheless, the XGB forecasting model has 
learned this incorrect behavior by recognizing non-existing patterns between features and 
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the EV charging power. For that reason, the XGB forecasting model may need more data to 
train to avoid negative forecast values. It is difficult and inaccurate to visually determine 
which forecasting model performs best, therefore, numerical results are presented in Table 
4.1. In addition, the optimized hyperparameters of the RF and XGB algorithms can be found 
in Hyperparameter optimization of forecasting models. Surprisingly, the averaged-driven 
forecasting model outperforms the more advanced ML-driven forecasting models. 
Unfortunately, the forecasting performance of the averaged model is still very poor as can be 
seen in Figure 4.2 and Figure 4.3. The application of forecasting models as a basis for smart 
charging seems to be inappropriate in workplaces where only a few charging piles are present. 
Hence, the collection of user-specific information might be inevitable. 

 
Figure 4.2: Visual evaluation of aggregated EV charging load forecasting models Building A. 

Table 4.1: Evaluation of aggregated EV charging load forecasting models Building A. 

Error metric RF default RF optimized XGB default XGB optimized Averaged 

MAE [kW] 1.528 1.426 1.560 1.456 1.246 

NRMSE [-] 0.152 0.139 0.152 0.140 0.125 
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Figure 4.3: Visual evaluation of aggregated EV charging load forecasting models Building A during last week's test data. 

The ML-driven forecasting models are optimized with temporal features, a holiday 
dummy, and a previous week lag. In addition to the ACF and VIF analysis, the feature 
importance is evaluated to further improve the set of input features as illustrated in Figure 
4.4. In both algorithms, the number of connections the previous week is seen as an important 
feature, which explains the earlier hypothesis about the effect of the lag feature on the 
sporadic large power peaks. Instead of using the previous week's power data, the forecasting 
models consider the previous week's number of connections as a lag. This is because a 
controller can only control the charging load, not the number of connected EVs. By using the 
number of connections as a lag, the forecasting models can predict the uncontrolled charging 
load even when a controller is in operation. Since the charging load and the number of 
connections have a strong correlation, the application of the previous week's number of EVs 
is valid. Furthermore, the temporal features are indispensable because they enable the 
forecasting model to learn patterns between datetime and EV power consumption. Without 
temporal features, the forecasting model would not be able to forecast zero loads on the 
weekends. Initially, weather features were also utilized as features. However, it appeared that 
weather features have a limited contribution to the forecasting performance while increasing 
model complexity and decreasing the forecasting horizon. A day-ahead forecasting horizon is 
a maximum with weather features, whereas a week-ahead forecasting horizon is applicable 
without weather features. Moreover, the forecasting models are not exposed anymore to 
discrepancies in the weather data and become more robust since they do not rely on the 
availability of weather data. A thorough analysis of the feature selection can be found in 
Feature selection of EV charging load forecasting models. 
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Figure 4.4: Feature importance RF and XGB EV charging load Building A. 

4.2. Forecasting models Building B 

In contrast to Building A, more patterns are visible in the heatmap of the Aggregated EV 
charging load from Building B as shown in Figure 4.5. EV charging often starts between seven 
and eight o’clock in the morning. Then, the charging load rapidly increases with the largest 
power peaks between nine o’clock in the morning and one o’clock in the afternoon. During 
the afternoon, the EV power consumption gradually decreases until charging stops between 
four and six o’clock in the afternoon. A clear daily pattern is observed in the data, which 
should be beneficial for the accuracy of the forecasting models. 
The forecasting models seem to tend to underestimate the EV charging load, especially 
towards the end of the test data, according to Figure 4.6. To verify if the hypothesis about 
underestimation is correct, residuals of the ML-driven and averaged-driven forecasting 
models are thoroughly investigated in Figure 4.7. Herein, a residual value is defined as 
forecasted value minus actual value. The histogram on the y-axis shows the distribution of 
the residuals, which are. biased toward negative values for both the ML- and averaged-driven 
forecasting models. The underestimation of the charging load is caused by an increasing trend 
in the charging load as illustrated in Figure 4.8. Here, the weekly rolling mean is calculated to 
smoothen the data. A clear upward trend can be observed, where the average charging load 
starts at approximately thirty kW and increases to approximately forty kW. An increase of 
thirty-three percent. The increasing EV charging load is caused by an increasing EV population. 
The weekly rolling means of the EV charging load and the number of connections are 
matching almost perfectly as shown in Figure 4.8. Re-training of the forecasting models is the 
most obvious solution to deal with the increasing trend and is essential to maintain a desirable 
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forecasting performance. The XGB forecasting model still generates negative forecast values. 
As already mentioned, this is unrealistic since discharging is currently impossible. Despite the 
concerns about inaccurate forecast values, the forecasting performance increased 
significantly in comparison to Building A whereby the RF forecasting model performs best 
according to the numerical results in Table 4.2. 

 
Figure 4.5: Heatmap of aggregated EV power consumption Building B. 

 
Figure 4.6: Visual evaluation of aggregated EV charging load forecasting models Building B. 
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Figure 4.7: Residual plot based on RF and averaged forecasting model. RF on the left and averaged on the right. 

Table 4.2: Evaluation of aggregated EV charging load forecasting models Building B. 

Error metric RF default RF optimized XGB default XGB optimized Averaged 

MAE [kW] 11.34 11.17 12.20 11.92 11.84 

NRMSE [-] 0.059 0.057 0.062 0.060 0.065 

 

 
Figure 4.8: Weekly-based rolling means. Left: EV charging load on the left and right: number of connections. 

The features ‘Time of day’ and ‘Number of connections previous week’ are relevant for 
both algorithms as illustrated in Figure 4.9. It is noticeable that the forecasting models do not 
rely as much on a single feature as observed in the feature importance evaluation from 
Building A. The robustness of a forecasting model increases when relying on multiple features 
since more underlying patterns are considered in comparison to a model with a high 
dependency on a single feature. The importance of weather features is also assessed for the 
EV charging load forecasting model from Building B. Again, the contribution of weather 
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features to the forecasting performance is limited. Therefore, weather features are not 
considered as input for the EV charging load forecasting models of Building B. A more detailed 
analysis of the feature's importance can be found in Feature selection of EV charging load 
forecasting models. 

 

 

Figure 4.9: Feature importance RF and XGB EV charging load Building B 

Significant spatial effects are observed between the aggregated EV charging load forecasts 
from Building A and Building B. The aggregated EV charging load at Building B can be 
forecasted more accurately in comparison to Building A as shown in Table 4.3. This confirms 
the hypothesis that aggregated EV charging loads can be forecasted more accurately with 
larger EV populations. Less randomness and more repetitive patterns are observed with larger 
populations, which decreases the complexity of the forecasting problem and thereby 
improves the forecasting performance. Despite the significantly improved forecasting 
performance, the forecasting models are generating less accurate forecasts at the end of the 
test data due to the increasing EV charging load and EV population. Therefore, it is essential 
to re-train forecasting models periodically to limit the impact of trends. 
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Table 4.3: Comparison of forecasting performances aggregated EV charging load Building A and B. 

Error metric RF A RF B XGB A XGB B Averaged A Averaged B 

NRMSE [-] 0.139 0.057 0.140 0.060 0.125 0.065 

 
The previously evaluated ML-driven forecasting models can be characterized as single-

step forecasters. As the name already suggests, single-step forecasters are limited since they 
can only forecast one time step ahead with the available historical data. In this study, the 
previous week's lag is used as an input feature. As a result, each historical data point enables 
the forecasting model to forecast the week-ahead value. For example, in real-time at time 
zero, the model can forecast the next week's value at time 671. At time one, the next data 
point, the model is capable of forecasting the value for time 672 et cetera. However, the 
advanced control technique MPC aims to optimize in real-time while considering a specific 
forecasting horizon. The consideration of a forecasting horizon, which is larger than one step, 
is not possible with a single-step forecaster. Therefore, multi-step forecasting methods are 
considered to enable the operation of MPC. Specifically, recursive multi-step and direct multi-
step forecasting are evaluated. Several configurations of recursive and direct multi-step 
forecasting are assessed. In total, twelve model configurations are considered. The 
abbreviations REC and DIR represent the recursive and the direct multi-step forecasting 
methods respectively. For both recursive and direct forecasting, three levels of optimization 
were investigated. Herein, level one represents default models. In level two, the 
hyperparameters of the RandomForestRegressor are optimized. Level three represents a 
configuration in which the hyperparameters of the regressor are optimized and where 
exogenous variables are included for model development. These six model configurations are 
evaluated with ninety-six and 672 lags. To do so, data from 01-03-2022 until 06-11-2022 is 
used for training, whereas the week from 07-11-2022 until 13-11-2022 is used to test the 
forecasting performance. The train/test split method with sizes of eighty and twenty percent 
respectively is not used since it is desirable to have the most up-to-date forecasting models 
in the MPC. The best-performing model is DIR3-96 – DIR3 model configuration with ninety-
six lags – according to the numerical results in Table 4.4. The error metrics scores in Table 4.4 
are based on day-ahead forecasts because they are required for the determination of the 
daily aggregated EV energy demand. In comparison to the single-step week-ahead EV 
charging load forecasts, DIR3-96 has a better performance according to the MAE score but 
scores slightly poorer with NRSME. In other words, DIR3-96 performs better on average but 
has more difficulty handling variability in the forecasts. The higher NRSME score is probably 
caused by the use of ninety-six lags, which enlarges the weight of the previous day in the 
decision-making process of the forecasting model. A DIR3-672 model might be a solution to 
improve the ability to deal with variability by considering an entire week as a lag. 
Unfortunately, DIR3-672 is not evaluated due to the computational time for model 
development. Furthermore, it is observed that recursive and direct multi-step forecasting 
models with ninety-six lags cannot accurately forecast without the application of exogenous 
variables. The models without exogenous variables have difficulties with forecasting Mondays 
and weekend days accurately as illustrated in Visualization of data sensitivity analysis multi-
step forecasting models. The temporal features, which are included in the exogenous 
variables, provide additional information about weekly patterns that allow for more accurate 
forecasts. The recursive forecasting models without exogenous variables can also be 
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improved significantly by increasing the number of lags from ninety-six to 672. In doing so, 
the forecasting performance increases since the EV charging loads are exposed to weekly 
patterns. 

Table 4.4: Forecasting performances of multi-step forecasting models day ahead. 

Metric Lags REC1 REC2 REC3 DIR1 DIR2 DIR3 

MAE 96 27.35 25.35 15.34 25.86 25.76 9.75 

672 15.90 13.39 13.29 N/A N/A N/A 

NRMSE 96 0.162 0.159 0.090 0.123 0.123 0.062 

672 0.101 0.083 0.076 N/A N/A N/A 

 
Unfortunately, the current hyperparameter optimization of the recursive and direct multi-

step forecasting models is very time-consuming. Since this study has a time limit, possibilities 
to decrease the model development time are investigated. Bayesian hyperparameter 
optimization is considered instead of RandomizedSearchCV to fasten the optimization 
process. However, this alternative cannot reduce the computational as much as desired. 
Therefore, a data sensitivity analysis is performed. The data sensitivity analysis aims to find 
the optimum amount of data whereby the computational time of model development is 
acceptable without compromising on the forecasting performance. A comparison is made 
between forecasting models that are trained on the initial eight months and models that are 
trained with only one month of data. The forecasting performances of the models trained 
with one month of data are numerically presented in Table 4.5. The forecasting model REC1-
672 performs best. Moreover, recursive forecasting with ninety-six lags becomes better with 
further optimization of hyperparameters and the inclusion of exogenous variables. 
Surprisingly, the opposite happens with recursive forecasting models using 672 lags. The 
forecasting performance decreases when optimizing the hyperparameters and including 
exogenous variables. This phenomenon may be related to the lesser impact of temporal 
features. Seasonality might become negligible due to the relatively short train data set, 
whereas the other temporal features might be less significant since the weekly patterns are 
already captured by the considered lags. The REC1-672 model trained with one month of data 
has a better MAE score than the same model trained with eight months of data. However, 
REC1-672 with more train data performs better according to the NRMSE. Therefore, the 
forecasting model with more data seems to be more stable. Furthermore, direct multi-step 
forecasting models perform poorer with fewer data because they purely focus on historical 
data. Hence, training with more data is beneficial for both forecasting typologies but has a 
larger impact on the direct models than on the recursive models. In both cases, NRMSE scores 
are higher with a smaller train data set, indicating less stability in their forecasts. Despite the 
superior performance of DIR3-96 trained on eight months of data (Figure 4.10), the REC1-672 
trained on one month of data is considered suitable and chosen for further development of 
the MPC in this study. 

  



32 

 

Table 4.5: Forecasting performances of multi-step forecasting models day-ahead with limited train data. 

Metric Lags REC1 REC2 REC3 DIR1 DIR2 DIR3 

MAE 96 28.32 27.59 16.52 29.13 28.98 13.56 

672 12.96 13.96 14.08 N/A N/A N/A 

NRMSE 96 0.173 0.166 0.086 0.132 0.132 0.075 

672 0.081 0.086 0.088 N/A N/A N/A 

 

 
Figure 4.10: Visual evaluation of best-performing multi-step EV charging load forecasting models with different sizes of 

train data. 

So far, this study focused on EV charging load forecasting. However, such a forecasting 
model cannot be utilized in real-time to determine control inputs of the MPC, because it is 
not possible to forecast and control a variable simultaneously. Therefore, to run an MPC that 
controls the EV charging load, variables that are independent of the EV charging load should 
be used as inputs Hence, the number of EV connections, building load, and PV generation are 
considered important disturbances on which the EV charging load should be anticipated. 
Multi-step forecasting models are created to forecast the number of connections and building 
load. The PV forecasts are provided by the external party Solargis, thus, PV forecasting models 
are out of scope in this study. The multi-step forecasting models are trained as REC1-672 
forecasting models with one month of data. 

The building load is trained on a similar set of data, namely from 01-03-2022 until 06-11-
2022. In Figure 4.11, the day-ahead forecasting performance is evaluated with test data. The 
forecasting model can approach the actual building load on work days closely, whereas an 
underestimation of the building load on weekend days can be observed. The underestimation 
of the building load during weekend days is not an urgent issue since the MPC does not affect 
on weekends due to the absence of EV charging. In addition to day-ahead forecasts, MPC 
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optimizes forecasts in real-time with a receding horizon. Since only the first control input is 
forwarded to the controller, the first value from each iteration is the most crucial. Hence, it is 
interesting to evaluate the performance of the first value at each iteration in comparison to 
the actual values as shown in Figure 4.12. The real-time forecasts fit almost perfectly the 
actual building load, also during the weekend. The real-time one-step ahead forecasts 
perform significantly better than the day-ahead forecasts as shown in Table 4.6. Therefore, 
the building load forecasting model seems to be suitable for MPC applications. 

 
Figure 4.11: Visual evaluation of day-ahead forecasting performance building load. 

 
Figure 4.12: Visual evaluation of real-time forecasting performance building load. 
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Table 4.6: Numerical results of day-ahead and real-time forecasting accuracy building load. 

Error metric Day-ahead Real-time 

MAE 42.61 11.10 

NRMSE 0.061 0.018 

 
Moreover, the number of connections forecasting model is created similarly to the 

building load forecasting model. The day-ahead and one-step-ahead forecasting 
performances are illustrated in Figure 4.13 and Figure 4.14 respectively. Significant deviations 
exist in the day-ahead forecasts in comparison to the actual number of connections. These 
deviations in the day-ahead forecasts are not favorable because they influence the decision-
making of the MPC. In a scenario where the forecasting model underestimates the number 
of EV connections, the maximum possible power that can be delivered to the EVs, according 
to Equation 9, is expected to be lower than in reality. As a result, the MPC will start EV charging 
earlier than necessary and thereby not fully use the potential to reduce power peaks. Similar 
issues arise when the forecasting model overestimates the number of connections. Then the 
model might want to provide more power than the EVs can charge or delays EV charging too 
long, which might lead to infeasibility in both cases. Fortunately, the one-step ahead 
performance significantly improves in comparison to the day-ahead forecasts as presented in 
Table 4.7. 

 
Figure 4.13: Visual evaluation of day-ahead forecasting performance number of EV connections. 
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Figure 4.14: Visual evaluation of real-time forecasting performance number of EV connections. 

Table 4.7: Numerical results of day-ahead and real-time forecasting accuracy of the number of EV connections. 

Error metric Day-ahead Real-time 

MAE 2.281 0.793 

NRMSE 0.063 0.022 

 

4.3. MPC 

The developed MPC model aims to optimize the interaction between the microgrid and 
the power grid. To do so, the EV and building power consumption as well as the PV power 
generation are considered. The daily EV energy demand, building load, number of EV 
connections, and PV generation forecasting models are integrated into the MPC model to 
provide day-ahead forecasts in real-time. The integrated forecasting models are based on the 
REC1-672 configuration and are trained with one month of historical data. In the first and 
second plots from Figure 4.15, the effect of EV charging load shifting is visible. The EV charging 
load is shifted more towards the afternoon, where it matches with the PV generation. 
However, the effect on the microgrid remains relatively limited due to the significant base 
load from the building. The power peaks of the microgrid are reduced by up to 11.7 percent 
according to the numerical results in Table 4.8. The reductions are not very significant, 
especially in relative terms, due to the enormous uncontrollable base load. Potentially, the 
power peak reduction becomes more significant when the EV population grows. 
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Figure 4.15: MPC results. 

Table 4.8: Overview of KPI scores. 

Power peaks Mon Tue Wed Thu Fri Avg 

Uncontrolled [kW] 1,250 1,378 1,221 1,218 1,117 1,237 

Controlled [kW] 1,256 1,217 1,170 1,165 1,096 1,181 

PRP [kW] -6 161 51 53 21 56 

PRPP [%] -0.48 11.7 4.2 4.4 1.9 4.5 

 
Another reason for the limited reduction of the power peaks is the overestimation of the 

daily aggregated EV energy demand. In Table 4.9, the forecasted daily aggregated EV energy 
demands are compared with the actual energy demands. The energy demand is 
overestimated almost every day throughout the test week. On Monday and Friday, 
overestimations exceed fifty percent. For that reason, it is important to continuously work on 
the improvement of the forecasting models. A possible improvement might be the 
introduction of a direct multi-step forecasting model. However, more investigation and time 
is required to confirm this hypothesis. 
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Table 4.9: Evaluation of daily aggregated EV energy demands. 

Energy consumption Mon Tue Wed Thu Fri Avg 

Actual [kWh] 1,451 1,821 1,732 1,503 849 1,471 

Forecasted [kWh] 2,229 1,964 1,707 1,932 1,336 1,834 

Absolute deviation [kWh] + 778 + 143 - 25 + 429 + 487 + 363 

Relative deviation [%] + 53.6 + 7.9 - 1.4 + 28.5 + 57.4 + 24.7 
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5. Discussion  

Data 
Only a limited amount of representative EV charging data is available in the case studies 

due to the interference of Covid. In this study, the period from 01-03-2022 until 13-11-2022, 
approximately eight months, is considered suitable for EV charging. Preferably, one year of 
data is utilized for model development because models become generally more robust since 
they can capture seasonality within a year if present. For example, the temperature has a 
significant effect on the performance of Li-ion batteries in EVs [61]. Therefore, seasonal 
differences might exist between the charging loads in summer and winter which are currently 
not captured due to the data limitation. Especially with the single-step and direct multi-step 
forecasting models, a sufficient data set is essential since these model configurations 
generate forecasts purely on historical data. 

Additionally, a sub-optimal feature is utilized in the development of the aggregated EV 
charging load forecasting model. The previous week's number of EV connections is used as a 
lag feature. However, the number of connections also includes fully charged EVs that are not 
participating anymore. For that reason, it would be beneficial to only consider the number of 
connected EVs whose batteries are not fully charged. Such a correction would improve the 
second hard constraint of the maximum aggregated charging power. 

Furthermore, energy consumption data with an hourly time interval are used in the model 
development of the building load forecasting model due to discrepancies in the power 
consumption data. Herein, mismatches are observed between the power consumption data 
of various subsystems. The mismatches are probably caused by the use of different 
measurement devices and different sampling times. The use of hourly energy consumption 
data is inevitable and seen as the best alternative for power consumption data with higher 
resolutions. 

Model development 
The number of iterations in the hyperparameter optimization of the single-step 

forecasting models is set to twenty-five. For the hyperparameter optimization of the initial 
multi-step forecasting models, the number of iterations is lowered to ten aiming to reduce 
computational time. With RandomizedSearchCV, ten randomly selected hyperparameter 
combinations are selected and evaluated. The best-performing combination of 
hyperparameter values can be seen as an optimal set. The disadvantage of 
RandomizedSearchCV is its inability to include the performance of the previously evaluated 
hyperparameter values. Therefore, the model might waste a significant amount of time with 
computations of irrelevant hyperparameter combinations. For the multi-step forecasting 
models trained on one month, Bayesian optimization is applied with ten iterations. The 
advantage of Bayesian optimization is its ability to consider the performance of previously 
used hyperparameter values. Hence, the optimization algorithm can further improve the set 
of hyperparameter values each iteration [62]. The hyperparameter optimization is already 
improved with the application of Bayesian optimization, however, the number of ten 
iterations remains critical. There might be a set of hyperparameter values that performs 
better but which are not evaluated due to the limited number of iterations. Therefore, the 
current set of hyperparameter values might be sub-optimal. Ideally, more iterations would be 
preferable since more hyperparameter combinations can be evaluated. 
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The RandomForestRegressor is assumed to be the optimal regressor for both the recursive 
and direct multi-step forecasting models. This assumption is purely based on the 
performances and interpretability of the XGB and RF single-step forecasting models. Other 
regressors might be more suitable. 

The DIR3-672 model is not considered in this study due to its significant development 
time. In further research, it is worthwhile to investigate this model configuration because the 
DIR3-96 model trained on the full data set already outperforms the other models. It is 
expected that a DIR3-672 model can perform even better due to the utilization of more lags. 

Furthermore, the single-step and multi-step forecasting models both generate point 
forecasts. The disadvantage of point forecasts is their inability to deal with their associated 
uncertainty. The addition of probabilistic prediction intervals might be a solution to deal with 
the uncertainty of point forecasts [63]. 

Model selection 
In this study, the DIR3-96 model, trained on the fully available train data, performs best. 

However, the REC1-672 trained on one month of data is selected for implementation in the 
MPC. Herein, the trade-off between performance and complexity is leading in the decision-
making. In total three forecasting models are required for the MPC simulation, therefore, a 
long development time is not desired. The disadvantage of the currently used REC1-672 
model is its significant dependency on the previous week. As a result, problems may arise 
after the holidays. Therefore, the application of this method should be further investigated 
or enhanced with exogenous variables when implemented in reality. But for the considered 
test week, the REC1-672 model is sufficient to prove the concept. 

MPC 
The aggregated EV energy demand is based on day-ahead forecasts. Herein mismatches 

can occur on aggregated level by under- or overestimation. At the individual EV level, the 
mismatch between the actual charged and desired amount of energy can vary even more. 
The aggregated EV approach does not allow direct assessment of the individual EV driver 
satisfaction Therefore, with real-life implementation, it is wise to consider a priority zone 
where EV drivers can charge uncontrolled to avoid significant mismatches between individual 
energy demands. Such measure will reduce the smart charging potential but ensures the 
satisfaction and acceptance of EV drivers. Moreover, the used forecasting model for the 
determination of the daily aggregated EV load is limited since it can only be trained until the 
implementation of a controller. Afterward, re-training is not possible anymore due to the 
interference of the controller. Hence, it is questionable how long this method will remain 
viable considering the increasing trend of the EV population. Finally, the used MPC model is 
a simplification of the MPC model from [59]. As a result, the infeasibility of the optimization 
problem was noticeable during the test week. The infeasibility can be solved by improving the 
MPC model, however, that is not the scope of this study. 
  



40 

 

6. Conclusions 
This study aims to investigate the effects of data-driven forecasting models on the 

controlling abilities of EMSs. More specifically, this study evaluates if data-driven forecasting 
models can overcome the lack of user-specific EV information in the application of MPC for 
smart charging. In doing so, aggregated EV charging load forecasting models are thoroughly 
explored at two similar workplaces with different spatial dimensions. Moreover, various data-
driven forecasting models are explored in each case study. Averaged-driven and ML-driven 
forecasting models are considered. The goal of this research is threefold. First, it is desired to 
investigate the viability of forecasting models at different spatial levels. Second, it is 
investigated which forecasting method is most suitable considering the trade-off between 
model performance and complexity at the different spatial levels. Third, the requirements for 
the constitution of these forecasting models and the implementation into MPC are 
investigated. 

Which set of features and algorithms leads to the most accurate ML-driven EV 
forecasting model? 

Several forecasting model configurations are evaluated. Initially, single-step forecasting 
models based on the algorithms XGB and RF are evaluated. A set of features is considered, 
containing: temporal features, lags, a holiday dummy, and weather features (TEMP and GHI). 
The weather features appeared to be irrelevant and are ultimately dropped through 
multicollinearity and feature importance. The remaining set of features consists of the time 
of day, weekday, month, holiday dummy, and the previous week's number of connections 
lag. Besides, the exclusion of weather features allows the forecasting model to forecast week-
ahead instead of day-ahead. The RF algorithm slightly outperformed the XGB algorithm with 
single-step forecasting in both case studies. If RF is combined with a multi-step forecasting 
method, the performance can increase even further, while also considering a forecasting 
horizon in real time. The DIR3-96 forecasting model trained on the full train data set performs 
best, but DIR3-672 is potentially more accurate. 

Are spatial effects noticeable when comparing the forecasting performance of small 
fleets with large fleets? 

There are significant spatial differences observed. The EV charging at larger populations 
is more consistent in comparison to smaller populations. The forecasting performances of two 
case studies with different spatial levels are compared with the error metric NRMSE. The RF 
model, XGB model, and averaged-driven forecasting model at Building B perform fifty-nine, 
fifty-seven, and forty-eight percent better on average in comparison to the same models at 
Building A. In addition, the major advantage of larger EV populations is the independency of 
user-specific information. Accurate forecasts can be generated without the cooperation of EV 
drivers. Thus, operating on aggregated level is more robust since a model is not dependent 
on the cooperation of EV drivers and is not sensitive to privacy-related issues, which reduces 
the burdens for real-life implementation. 

How do ML-driven forecasting models perform in comparison to averaged forecasting 
models, considering the trade-off between performance and complexity? 

At small EV populations, such as Building A, the averaged-driven forecasting model 
outperforms the more advanced RF and XGB ML-driven algorithms with NRMSE scores of 
0.125, 0.139, and 0.140 respectively. Since small EV populations are prone to significant 



41 

 

randomness, models cannot find any useful pattern in the historical data or they are learning 
non-existing patterns based on randomness. Nevertheless, the forecasting performance of 
the averaged-driven model is still very poor and not suitable for implementation into a 
controller. Therefore, it can be concluded that the requirement of user-specific information 
in small case studies, an EV population of approximately five EVs in this case, is inevitable. At 
larger EV populations, such as building B, both ML- and averaged-driven forecasting 
performances increase significantly due to more repetitive patterns and less influence of 
individual EV randomness, which decreases the complexity of the forecasting problem. The 
RF algorithm outperforms the XGB algorithm and the averaged-driven model with NRSME 
scores of 0.057, 0.060, and 0.065 respectively. ML-driven models become favorable since they 
are fed with exogenous features that allow the models to identify and learn patterns to 
improve the understanding of underlying factors that influence the forecasted variable. In 
contrast, averaged-driven forecasting models are solely trained on historical EV charging data. 
Hereby all occurrences for specific weekdays or holidays are combined into a single average 
profile. The disadvantage of averaged-driven forecasting models is their inability to deal with 
trends. The weight of historical data in comparison to the relatively new data, that are 
exposed to a trend, results in under- or overestimation of the target. In other words, the size 
of historical data to train averaged-driven forecasting models delays the ability to capture 
trends. 

What are the requirements to implement a forecasting model into an MPC and what 
are the different effects of the various forecasting models on the MPC? 

The required data for a forecasting model depend on the objective. In the case of 
aggregated EV charging load forecasts, historical aggregated power consumption data and 
the number of connections are required. The same historical data about the number of 
connections is necessary to forecast the number of connections itself. The building load can 
be forecasted with historical building power consumption data. Hereby, data quality is an 
often forgotten aspect. In this study, various sampling times in combination with different 
measurement devices resulted in mismatches between power consumption data. Therefore, 
it is recommended to collect data with a high and similar time resolution to prevent 
mismatches. A high resolution also prevents the necessity of interpolation with upsampling. 
Furthermore, it is recommended to apply multi-step forecasting models in MPC instead of 
single-step forecasting models. Multi-step forecasting models can generate real-time 
forecasts while considering a specified forecasting horizon. The data sensitivity analysis shows 
that accurate multi-step forecasting models can already be generated after one month. As a 
result, real-life implementation is almost immediately feasible after the installation of EV 
charging infrastructure. In doing so, periodical re-training is crucial for forecasting models that 
are exposed to a trend, such as the increasing EV population. Without re-training, forecasting 
models may not be able to capture trends. Therefore, it is strongly advised to re-train 
forecasting on a weekly or monthly basis. 

The main advantage of applying data-driven EV forecasting models on an aggregated scale 
(up to approximately a hundred EVs) is related to its smart charging applicability in real-life 
operations. User-specific information is not required to accurately forecast the number of 
connected EVs. Hence, forecasting models become more robust since they are not dependent 
on the willingness of EV drivers to cooperate. In addition, privacy issues are avoided because 
EMSs do not collect personal information. Finally, operating on aggregated scale allows MPC 
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to solve the optimization problem as a single-objective instead of a multi-objective problem 
where each EV is considered separately in the optimization problem. 

Further research 
Finally, some topics remain uninvestigated, which are interesting for further research. A 

summation of these uninvestigated topics is given below: 

• The direct multi-step forecasting model with the application of 672 lags could be 
investigated. This model configuration is excluded from this study due to time 
constraints but has the potential to outperform the other model configurations. 

• Other ML-driven algorithms could be evaluated in a multi-step forecasting setup. This 
study only focused on RF, whereas other ML algorithms might perform even better. 

• Stacking forecasting models in a multi-step forecasting configuration with a meta-
model could be interesting to further improve forecasting performances. Stacking 
leverages the strengths of each forecasting model and combines them to generate a 
final output. 

• This study relies on point forecasts. The addition of probabilistic prediction intervals 
might be a solution to reduce the uncertainty of point forecasts. It would be 
interesting to investigate the effect of prediction intervals on forecasting accuracy and 
the performance of the MPC. 
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A. Overview case studies 

Building A 

 
Figure A.1: Network map Building A. 
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Building B 

 
Figure A.2: Overview of electrical loads Building B. 

  



50 

 

B. Calendar plots 

Calendar plots provide insights about seasonality, trends, and deviations in data 
throughout the year(s) with a daily resolution. In this study, calendar plots are valuable in the 
early stages to select appropriate data for model development. 

Aggregated EV charging load Building A 
Significant differences are observed between 2021 and 2022. The EV charging load 

increased in 2022 compared to 2021. The increasing EV charging load is probably caused by 
an increase in the EV population (trend) in combination with the Covid pandemic (deviation). 

 
Figure B.1: Calendar plot aggregated EV charging load Building A. 

Aggregated EV charging load Building B 
The influence of the Covid pandemic and the increasing EV charging load is also noticeable 

in Building B. In 2021, the low EV charging loads are caused by Covid, whereas the increasing 
EV charging load is caused by a growing EV population in 2022. 

 
Figure B.2: Calendar plot aggregated EV charging load Building B. 
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Building load Building B 
The years 2018, 2019, and 2020 deviate from 2022. In the first two years, the building load 

is significantly lower on the weekends in comparison to the load nowadays. The unexpected 
Covid period influenced the building load in 2020. In 2021, Covid is not the only factor that 
influences the building load. Malfunctioning of measurement devices causes zero building 
load in May and June. The building load data seems to be representative since October 2021. 

 
Figure B.3: Calendar plot aggregated building load Building B. 
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C. Evaluation of ACF and multicollinearity 

Evaluation Building A 
Temporal features, a holiday dummy, lag features, and weather features are initially used 

as input for the forecasting models. From this set of features, lags are the only category that 
can be changed and optimized. Therefore, ACF is applied to find the correlation of lags. The 
higher the correlation, the more it will enhance the forecasting performance. The first lags 
are correlated the most but are considered irrelevant since they limit the forecasting horizon. 
In the Figure below, a weekly pattern is visible. Therefore, the previous week's lag is included 
in the initial set of features. 

 
Figure C.1: ACF evaluation of the number of connected EVs Building A. 

To enhance the interpretability of the forecasting models, multicollinearity is evaluated 
among the initial set of features. The features TEMP and month exceed the threshold of five 
in the first iteration. Thus, TEMP is removed since it has the highest VIF value. In the second 
iteration, the VIF value of ‘Month’ is significantly dropped. As a result, the threshold is not 
violated. The remaining features are used as input for the initial model development. 
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Table C.1: VIF analysis Building A 

Features Iteration 1 Iteration 2 

TEMP 11.24 Removed 

GHI 2.66 1.76 

Number of connections previous week 1.29 1.28 

Time of day 3.98 3.48 

Day of week 2.89 2.89 

Month 8.09 4.18 

Holiday 1.03 1.03 

 

Evaluation Building B 
More significant correlations among the lags are noticeable. Again, weekly patterns are 

present in the data regarding the number of EV connections. Therefore, the previous week's 
lag is selected as the lag feature. 

 
Figure C.2: ACF evaluation of the number of connected EVs Building B. 

Similar results regarding multicollinearity are noticeable in Building B. The feature TEMP 
is removed after the first iteration, whereas the VIF value of the month feature drops below 
the threshold of five after the second iteration. The same initial set of features is used at 
Building B as is used at Building A. 
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Table C.2: VIF analysis Building B 

Features Iteration 1 Iteration 2 

TEMP 12.68 Removed 

GHI 3.36 2.31 

Number of connections previous week 2.25 2.24 

Time of day 3.87 3.47 

Day of week 3.52 3.51 

Month 10.17 4.94 

Holiday 1.03 1.03 
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D. Feature selection of EV charging load forecasting models 

Building A 
A significant variation in feature importance is noticeable among the RF and XGB 

algorithm. The feature GHI seems to be important for the RF algorithm, whereas GHI has the 
lowest feature importance with the application of XGB. Therefore, the feature importance of 
GHI becomes arguable. In addition, GHI values are generated twenty-four hours ahead, which 
limits the EV charging load forecasting horizon. A week-ahead forecasting horizon can be 
achieved without the application of weather features. Despite the contradictions between RF 
and XGB, it is worthwhile to investigate the exclusion of GHI to lengthen the forecasting 
horizon and decrease model complexity. In the Table, a comparison is made between the 
forecasting performances with and without weather features. Astonishingly, the forecasting 
performance of both algorithms increases slightly. An increase in the XGB forecasting model 
is not unexpected due to the low GHI feature importance. However, GHI has a high feature 
importance for the RF forecasting model. 

 

 
Figure D.1: Feature importance evaluation Building A. 
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Table D.1: Comparison of forecasting performances with or without weather features Building A. 

Model MAE [kW] NRSME [-] 

RF 1.426 0.139 

RF + weather 1.500 0.143 

XGB 1.456 0.140 

XGB + weather 1.583 0.148 

 

Building B 
Similar results are obtained from the feature importance evaluation in comparison to 

Building A. The RF forecasting performance improved slightly, whereas the XGB forecasting 
performance decreased slightly. Therefore, GHI is removed from the set of input features to 
decrease the model complexity and increase the forecasting horizon. 

 

 
Figure D.2: Feature importance evaluation Building B. 
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Table D.2: Comparison of forecasting performances with or without weather features Building B. 

Model MAE [kW] NRSME [-] 

RF 11.17 0.057 

RF + weather 11.76 0.065 

XGB 11.92 0.060 

XGB + weather 11.36 0.062 
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E. Hyperparameter optimization of forecasting models 

Table E.1: Results of hyperparameter optimization single-step forecasting models. 

Model Hyperparameter Default Building A Building B 

XGB learning_rate (eta) 0.30 0.11 0.16 

n_estimators 100 60 80 

max_depth  6 9 9 

min_child_weight 1 9 3 

gamma 0 1 10 

subsample 1 0.9 0.8 

colsample_bytree 1 0.9 0.9 

reg_lambda 1 0.3 0.3 

reg_alpha 0 0.3 0.7 

RF n_estimators 100 140 150 

max_depth None 60 90 

min_samples_split 2 8 9 

min_samples_leaf 1 7 4 

max_features ‘auto’ ‘sqrt’ ‘sqrt’ 

bootstrap False False False 
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Table E.2: Results hyperparameter optimization multi-step forecasting models Building B. 

Train 
data 

Model 
configuration 

n_estimators max_depth min_samples_split min_samples_leaf 

8
 m

o
n

th
s 

REC1-96 100 None 2 1 

REC2-96 90 80 7 3 

REC3-96 80 90 8 4 

DIR1-96 100 None 2 1 

DIR2-96 80 90 8 4 

DIR3-96 80 90 8 4 

REC1-672 100 None 2 1 

REC2-672 90 110 5 8 

REC3-672 100 140 5 9 

1
 m

o
n

th
 

REC1-96 100 None 2 1 

REC2-96 72 89 9 5 

REC3-96 72 89 9 5 

DIR1-96 100 None 2 1 

DIR2-96 112 88 4 2 

DIR3-96 112 88 4 2 

REC1-672 100 None 2 1 

REC2-672 112 88 4 2 

REC3-672 112 88 4 2 
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F. Visualization of data sensitivity analysis multi-step forecasting models 

Visualization of performances forecasting models trained with eight months of data 

 
Figure F.1: REC-96 models trained with eight months of data. 

 
Figure F.2: REC-672 models trained with eight months of data. 
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Figure F.3: DIR-96 models trained with eight months of data. 

Visualization of performances forecasting models trained with one month of data 

 
Figure F.4: REC-96 models trained with one month of data. 
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Figure F.5: REC-672 models trained with one month of data. 

 
Figure F.6: DIR-96 models trained with one month of data. 


