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Abstract

With the demand for more information on the building’s indoor climate, a massive amount
of multi-sensors are mounted in buildings. Sensor anomalies in smart buildings lead to higher
energy consumption and a less comfortable indoor climate. In the state of practice, rule-
based approaches were proposed to detect and diagnose sensor anomalies in the building
sensor network. However, as the number of sensors is growing and the types of sensors are
becoming more diverse, rule-based approaches become more and more limiting and expensive.

This project proposed a data-driven detection and diagnosis framework that transfer the
knowledge from one sensor to the other sensors in the network for detecting and diagnosing
sensor anomalies in the smart building. In the proposed framework, all the data from one
room that contains targeted anomalies is chosen to be the training set. Principal component
analysis (PCA) is used to extract the features, and support vector machine (SVM) is used to
model the classifier. This framework is tested specifically on all the CO2 sensors in a smart
building. Functions of detecting a single anomaly, detecting mixed anomaly and diagnosis
anomaly are evaluated and compared with the state of practice. Moreover, the influence of
anomaly rate on the performance of the proposed method is investigated. In order to test
the sensitivity to the training dataset, a final experiment was performed where the room that
provide the training data was changed to a different room.
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Chapter 1

Introduction

1-1 Research background

As the increase of the population, energy consumption is rising. The increment in energy
consumption is bringing many impacts on the world. This increment is leading to global
warming and global energy shortage. Global warming and global energy shortage are very
much of concern. Two of the consequences of global warming and the energy shortage are
climate change and energy price increases. These consequences have raised people's awareness
of the massive energy consumption. In 2022, the whole world is in the middle of the energy
transition because the goal is to reach net-zero operation by 2050 [1].

Among the energy consumption, buildings are responsible for 36% of the total amount [2].
Most of the energy is spent on maintaining the indoor climate. Therefore, the building
and construction sector is playing important roles in this global transition. To cope with
the massive energy consumption, many companies, such as Adviesbureau DWA (DWA), are
researching and developing smarter and more sustainable solutions. These solutions such as
digital twins, data-driven climate control and energy monitoring platform, dedicate to giving
human being a better indoor climate but meanwhile minimise the usage of energy. They
rely heavily on the analysis and usage of big data. To satisfy the increasing demand for big
data, more and more sensors are mounted in the building. These sensors assist the building
management system (BMS) in monitoring and controlling the building's indoor environment.

However, the sensors sometimes would give measurements that do not comfort the expected
behaviours. They are abnormal events or patterns that deviate from normal or expected
events. These data are called anomalies.

The cause of the sensor anomalies can be two scenarios. It could be the sensors themselves
are broken or have errors. For example, sensors need periodic calibration. If one sensor is
not correctly calibrated, the output data will have an o�set. It could also be that unexpected
events happened in the environment that make the sensors output abnormal values. For
example, the heating, ventilation and air conditioning (HVAC) system could be su�ering
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