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SUMMARY 
 

Brains for Buildings Energy Systems (B4B) is a multi-year, multi-stakeholder project that aims at developing 
smart building methods to enhance the operations in buildings in terms of reducing energy consumption, 
increasing energy flexibility, increasing occupant comfort, and improving installation maintenance costs. 
This will be achieved by developing faster and more efficient Machine Learning and Artificial Intelligence 
models and algorithms. The project is geared to existing utility buildings such as commercial and institu-
tional buildings. 

There are five work packages in this project dedicated to above tasks. This report is an outcome from the 
Work Package 4 (WP 4) of the B4B project. WP4 works under “Data integration” theme. There are many 
heterogeneous data sources in buildings, e.g. sensor data, 3D model data, time schedules, occupant data, 
asset maintenance data, electrical system data, etc. Their data types, naming conventions and formats 
differ, making it difficult to use these data for developing models and algorithms. Data sources or systems 
communicate using different protocols and exchange data in different formats and standards. Therefore, 
these data are often siloed, they are not available via a single platform, meaning there is little to no inter-
action between them. WP4 aims to develop methods to integrate these data silos for developing Machine 
Learning and Artificial Intelligence models and algorithms while also guaranteeing privacy and ethics when 
collecting, storing, integrating, sharing, managing or utilizing data in smart buildings. 

This deliverable “D.4.3 Data needs and requirements in smart buildings” reports the outcomes of T4.1.1: 
Study of data needs and requirements in a bottom-up and top-down manner. The study method consists 
of a literature study based on the smart building research field, a market study based on interviews carried 
out with real estate building owners and platform providers in the Netherlands, and meetings with other 
work packages in the B4B project. In this way, this report addresses the entire “smart building” spectrum 
to find out the use cases, their data needs and requirements, limitations and barriers when utilizing data, 
and finally, the idea for an ideal best-case scenario for data collection and integration. 

Results of the study act as the foundation to develop a data collection and integration reference architec-
ture for data integration in smart buildings in the upcoming deliverable (T4.2.1: Development of a refer-
ence system architecture and set of data flow procedures).  

This report discusses various data needs and requirements in smart buildings in terms of five smart build-
ing use cases identified according to the literature and further elaborates on available systems in build-
ings, data types, data formats, and data storage techniques. It then presents the barriers and limitations 
to data collection. Finally, an idea of an ideal best-case scenario is presented, giving an overview of what 
needs to be achieved via a data collection and integration reference architecture.  

In summary, developing smart building solutions depends on metered time series data and real time data 
from sensors, data from external services, occupant feedback, domain expert knowledge and contextual 
data/ metadata. Often, developing these solutions suffer from a) unavailability or partial availability of 
required data, b) low-quality data (accuracy, low resolution, timeliness, missing samples), c) unstructured 
data (naming conventions, metadata standards, data formats) and d) limitations due to accessibility, pri-
vacy and ownership.  

Therefore, improving data availability, improving data quality, structuring the data and adhering to privacy 
and ethics guidelines can speed up the development of smart building solutions. Considering the require-
ments from the literature and market study, it also suggests that a reference architecture for data integra-
tion should be able to provide a) methods for data acquisition, storage, management and backup to im-
prove data availability, b) provide standardisation to data originating from different systems using standard 
schemas and well-recognised data models, c) provide access to historical and real time data d) support 
bidirectional communication between the smart building applications and building controllers and e) pro-
vide scalable solutions that can accommodate the growing number of data sources and users. 
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SAMENVATTING 
Brains for Buildings Energy Systems (B4B) is een meerjarig project met meerdere belanghebbenden dat 
tot doel heeft om slimme bouwmethoden te ontwikkelen om de activiteiten in gebouwen energie-
efficiënter te maken, om flexibel energieverbruik mogelijk te maken, om comfort te verhogen van de ge-
bruikers en om installatietechnisch onderhoud slimmer te maken. Dit wordt bereikt door snellere en ef-
ficiëntere modellen en algoritmen voor Machine Learning en Artificial Intelligence te ontwikkelen. Het pro-
ject is afgestemd op bestaande utiliteitsbouw. 

Vijf werkpakketten in dit project zijn gewijd aan bovenstaande taken. Dit rapport is een uitkomst van het 
Werkpakket 4 (WP 4) van het B4B-project, met als thema "Data Integratie". Er zijn veel heterogene 
gegevensbronnen in gebouwen, b.v. sensorgegevens, 3D-modelgegevens, tijdschema's, gegevens van be-
woners, gegevens over systeemonderhoud, gegevens van elektrische systemen, enz. Hun gegevenstypen, 
naamgevingsconventies en formaten zijn heel verschillend van gebouw tot gebouw, waardoor het moeilijk 
is om deze gegevens te gebruiken voor het ontwikkelen van gestandaardiseerde rekenmodellen en algo-
ritmen. Gegevensbronnen of systemen communiceren bovendien met verschillende protocollen en wis-
selen gegevens uit in verschillende formaten en standaarden. Daarom zijn deze gegevens vaak enkel 
beschikbaar in silo's. Ze zijn niet beschikbaar via één platform, waardoor er weinig tot geen interactie of 
koppeling of gezamenlijk gebruik is van meerderede dergelijke silo’s. WP4 heeft tot doel methoden te 
ontwikkelen om deze gegevenssilo's te integreren voor het ontwikkelen van modellen en algoritmen voor 
machine learning en kunstmatige intelligentie, terwijl ook privacy en ethiek worden gegarandeerd bij het 
verzamelen, opslaan, integreren, delen, beheren of gebruiken van gegevens in slimme gebouwen. 

Deze deliverable "D.4.3 Gegevensbehoeften en -vereisten in slimme gebouwen" rapporteert de resultaten 
van taak T4.1.1: Studie van gegevensbehoeften en -vereisten op een bottom-up en top-down manier. De 
onderzoeksmethode bestaat uit een literatuurstudie rond ‘smart building’, een marktstudie op basis van 
interviews met vastgoedeigenaren en platform providers in Nederland, en overleg met de overige B4B-
werkpakketten. Het resultaat is een rapport dat het hele "smart building" spectrum behandelt om de use-
cases, hun gegevensbehoeften en -vereisten, en beperkingen bij het gebruik van gegevens te achterhalen, 
incl. een gewenst best-case scenario voor gegevensverzameling en integratie. De resultaten van deze 
studie vormen de basis voor de ontwikkeling van een referentie-architectuur voor gegevensverzameling 
en gegevensintegratie in slimme gebouwen. 

Dit rapport bespreekt verschillende databehoeften en -vereisten in slimme gebouwen, aan de hand van 
vijf smart building use cases die volgens de literatuur zijn geïdentificeerd. Het gaat verder in op bes-
chikbare systemen in gebouwen, datatypes, dataformaten en dataopslagtechnieken. Vervolgens worden 
de barrières en beperkingen voor het verzamelen van gegevens weergegeven. Ten slotte wordt gewenst 
best-case scenario gepresenteerd, dat een overzicht geeft van wat moet worden bereikt via een referentie-
architectuur voor gegevensverzameling en integratie. 

Samenvattend is het ontwikkelen van slimme bouwoplossingen afhankelijk van gemeten 
tijdreeksgegevens en realtime gegevens van sensoren, gegevens van externe diensten, feedback van be-
woners, kennis van domeinexperts en contextuele gegevens/metagegevens. Het ontwikkelen van deze 
oplossingen heeft vaak te lijden onder a) onbeschikbaarheid of gedeeltelijke beschikbaarheid van benodi-
gde gegevens, b) gegevens van lage kwaliteit (nauwkeurigheid, lage resolutie, tijdigheid, ontbrekende voor-
beelden), c) ongestructureerde gegevens (naamgevingsconventies, metagegevensstandaarden, 
gegevensformaten) en d) beperkingen vanwege toegankelijkheid, privacy en eigendom. 

Daarom kan het verbeteren van de beschikbaarheid van gegevens, het verbeteren van de 
gegevenskwaliteit, het structureren van de gegevens en het naleven van privacy- en ethische richtlijnen 
de ontwikkeling van slimme bouwoplossingen versnellen. Het rapport concludeert dat een referentiearchi-
tectuur voor data-integratie in staat zou moeten zijn om a) methoden voor data-acquisitie, opslag, beheer 
en back-up te bieden om de beschikbaarheid van data te verbeteren, (b) te zorgen voor standaardisatie 
van data met behulp van standaardschema's en goed erkende datamodellen, c) toegang te bieden tot 
historische en realtime gegevens, d) bidirectionele communicatie tussen de slimme gebouwapplicaties en 
gebouwcontrollers te ondersteunen en e) schaalbare oplossingen te bieden die geschikt zijn voor het 
groeiende aantal gegevensbronnen en gebruikers. 
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1 INTRODUCTION 

1.1 Background of the study 
Commercial and residential buildings in Europe account for 40% of the total energy use and 36% of the carbon 
dioxide emissions, which mainly stem from the construction, usage, renovation, and demolition of buildings 
(European Commission, 2008). Furthermore, almost 50 % of Europe's total energy consumption is used for 
heating and cooling, 80 % of which is used in buildings. Therefore, there is great societal awareness and reg-
ulatory pressure to make buildings sustainable and energy-efficient enable the energy transition. The con-
stantly increasing performance requirements are accompanied by rapid technological developments, advance-
ments in the Information and Communication Technology (ICT) and Internet of Things (IoT) industries, as well 
as the richness and volume of data generated throughout the entire lifecycle of the built assets. Furthermore, 
the effects and benefits of cloud computing, data analytics and Artificial Intelligence (AI) are now also recog-
nisable in the built environment. Leveraging ICT, IoT and AI enables the deployment of efficient methods for 
smart building control and optimised energy use. To achieve these, buildings are expected to interact with 
external systems such as electrical grids, renewable energy systems, and other buildings while responding to 
various demands and external conditions. In other words, buildings need to become smart and effectively 
utilise the deployed smart building operation strategies. A smart building must satisfy the occupant's increas-
ing demands for a better indoor climate, energy efficiency, health, well-being, productivity, and safety. 

All those use cases mentioned above rely on data from various systems in buildings. Typically, each building 
is different, and the data is distributed across multiple systems such as Building Management Systems (BMS), 
Asset Management Systems (AMS), IoT devices, smartphones, databases, etc. Available data, their naming 
conventions and data formats also differ significantly among different buildings and vendors. Depending on 
the use case, the data that is required also varies. Therefore, it is important to investigate what data is required 
for a given use case and the methods for acquiring and integrating those data to support the various and 
constantly growing data needs in smart buildings. 

1.2 Research questions 
There are various use cases that are related to the fulfilment of various objectives in buildings. These objec-
tives can be improving energy performance, improving user satisfaction, detecting faults in building operation, 
performing building maintenance over time, etc. Data needs and requirements differ among those use cases, 
and it is important to highlight these differences in relation to their data needs and requirements. Defining 
these data needs and requirements is only possible when the use cases of the building are clearly understood 
and defined. One simple example of a use case is to determine how much energy a building uses per m2. This 
energy KPI is a good indicator of how a building is performing energy-wise, and it requires certain data input 
to be calculated.  

To provide useful information to support the given use case (e.g., derive the energy usage per m2 as mentioned 
above), one needs to determine which data is needed. For instance, besides energy consumption, determining 
the KPI requires data about the type of building, its floor area, building usage, electrical equipment, and their 
wattage etc. Therefore, it is also crucial to understand which data is needed for the given use case. 

Most use cases (e.g., anomaly detection in system operation, Model Predictive Control (MPC), etc.), need a 
holistic approach, meaning that the data should be collected from various distributed sources in a building. In 
other words, buildings are typically characterised by heterogeneous systems, data models, naming conven-
tions, and data access control. Therefore, it is also important to investigate which data is available in which 
formats and which access control mechanisms are available to fulfil above needs. 

Therefore, this report aims to answer following research questions: 

1. What are the use cases related to fulfilling various objectives in buildings, in particular focused on 
data-driven smart buildings? 

2. What are the data needs and requirements for those use cases? 

3. What data is available and how to fulfil those needs and requirements ideally? 

http://www.brainsforbuildings.org/
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This leads to the overall structure and approach as shown in Fig. 1 for this report in which multiple use cases 
are listed, for each of them the available data is listed as well as the data that is needed, and finally those 
needs and available data are mapped to analyse how these use cases can be supported through the right type 
of data integration. 

 

Figure 1 Mapping the data needs by use cases 

1.3 Objective and scope of the study  
The main objective of this deliverable is to investigate the data needs and requirements in smart buildings, 
thereby proposing future directions for data collection and integration for the upcoming tasks within the 
Brains4Buildings project. 

Therefore, the main objectives of this report are to: 

• identify the data needs and requirements in smart building applications according to the state-of-the-
art research in the area. 

• identify data needs and requirements in smart building applications according to the state-of-practice 
in commercial applications (market study on the real estate sector). 

• provide a state-of-the-art review about the smart building platforms. 

• provide a market study on smart building platforms based on input from platform providers. 

• provide suggestions for a data collection plan and a reference architecture for smart buildings (ideal 
scenario). 

http://www.brainsforbuildings.org/
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2 METHODOLOGY 

2.1 Research approach 
The data needs and requirements in the smart building domain can be quite diverse. These needs and re-
quirements vary according to their intended purpose. Therefore, this research takes a "use case"- based ap-
proach to understand and align those needs and requirements to specific use cases. This overall approach is 
schematically displayed in Fig. 2. 

 

Figure 2 Research approach to map data needs and requirement  
leading to data collection and integration architecture 

 

First, state-of-the-art research on smart buildings and smart building operation and maintenance is reviewed 
to identify different use cases, and their needs and requirements (leftmost Literature Review node in Fig. 2). 
In addition to the state-of-the-art research, we also conduct a market study by interviewing Dutch real-estate 
companies participating in the Brains4Buildings project (left Market Study node in Fig. 2). Real-estate compa-
nies need to comply with various regulations and operate buildings efficiently and cost-effectively. They provide 
an in-depth view of various data needs and requirements that will be analysed and structured to form a reliable 
overview of smart building use cases (Fig. 2, left). 

Second, buildings rely on different software solutions and platforms to collect, analyse and visualise building 
data for a given use case (Fig 2, right). These platforms facilitate monitoring, reporting, diagnostics, and ana-
lytics combined in modules for building owners who seek useful information about their building. A state-of-
the-art review of smart building platforms is performed to understand how different platforms provide different 
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methods for data acquisition, collection, and integration. Also in this case, a second market study presents 
the results of interviews conducted with platform provider companies participating in the Brains4Buildings 
project (market study node towards the right in Fig. 2). The market study aims to demonstrate how the previ-
ously identified use cases are practically implemented in buildings. Available data, data formats, naming con-
ventions, and integration methods are also identified and discussed. Finally, a bridge is made between use 
cases and platforms to identify key takeaways for data collection and integration. 

2.2 Reading guide 
The remainder of this report is structured as follows: 

• Chapter 3 identifies the smart building applications (use cases) and their data needs identified from 
the scientific literature. Problems and limitations of the data collection are also discussed. 

• Chapter 4 describes the current data needs identified according to the real estate sector. The future 
needs, challenges and limitations related to data collection are also identified.  

• Chapter 5 presents a state-of-the-art review on smart building platforms and data sources in buildings. 

• Chapter 6 defines the functions of smart building platforms.  

• Chapter 7 discusses the existing gap between the required data and the available data, followed by 
initial suggestions on how to overcome the gap. 

These five chapters align fully with the 5 lowermost nodes in the diagram in Fig. 2. 

http://www.brainsforbuildings.org/
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3 STATE-OF-THE-ART DATA NEEDS IN SMART BUILDINGS 

3.1 State-of-the-art in smart building use cases 
The following sections describe the main findings related to key use cases in smart buildings according to the 
scientific literature. Each of these use cases has different aims and goals, and the below section aims to find 
these different categories of use cases. Of course, the potential list of use cases is endless, hence we focus 
on the five most commonly found and identified use cases in the literature. 

3.1.1. Use case 1 - Fault detection and diagnostic analysis 
Faults in sensors, actuators, configuration errors in BMS etc., lead to significant energy losses in buildings. It 
is estimated that those faults account for 15 – 30% of energy costs (Taylor et al., 2005). Fault Detection and 
Diagnostics (FDD) has therefore gained a lot of attention in smart buildings. Roth et al. (2005) identified 13 
faults in commercial buildings and their contribution to energy loss in buildings. These fault types are; keeping 
lighting and HVAC systems on when a space is unoccupied, duct leakage, dampers not working properly, air-
flow not balanced, insufficient evaporator airflow, software programming errors, improper controls hardware 
installation, improper controls setup/commissioning, control component failure or degradation, valves not 
closing properly, air cooled condenser fouling and improper refrigerant charge, waterside issues, and refriger-
ation circuits. The key idea of FDD is that faults can be detected in these active systems, they can be diag-
nosed, and then finally resolved. The prevalent purpose lately is to enable FDD in an automated manner using 
machine learning algorithms and AI libraries that detect unexpected outliers when expecting a certain pattern 
of data.  

When it comes to potential causes for the found errors (i.e. diagnosis), plenty of very specific reasons can be 
named and found, which is a major challenge in FDD research. In a more general level, Lazarova-Molnar et al. 
(2016) distinguish four common reasons for faults in smart buildings; namely, 1) wrongly programmed BMS, 
i.e., wrongly programmed control logic, 2) wrongly configured or conflicting setpoints, 3) wrongly configured 
building equipment and 4) misplaced or wrongly wired sensors and actuators.  

There are several methods to detect and diagnose these faults, such as model-based, data-driven and hybrid 
methods (Lazarova-Molnar et al., 2016). The data-driven approach uses historical data to derive relationships 
and predictive models (black-box models), whereas model-based FDD is based on physical models (white-box 
models). A hybrid approach is a combination of the above two (grey-box models).  

Typical data requirement for FDD consists of event logs that indicate faults or reconfigurations (Lazarova-
Molnar et al., 2016), metered data obtained from sensors (Lazarova-Molnar et al., 2016; Schumann et al., 
2011), occupant feedback received through real-time feedback or surveys (Lazarova-Molnar et al., 2016; 
Schumann et al., 2011), domain expert knowledge (most often in the form of "if-then" rules) (Schumann et al., 
2011) and other implicit data, such as anonymised internet usage data, WiFi connectivity (Lazarova-Molnar & 
Mohamed, 2016). 

An overview of these methods and ways of working is displayed in Fig. 3, where one can see that data collection 
happens either with real-time or historical data, after which black-box, white-box models are built that both are 
able to predict how the system in the building is meant to be functioning. As soon as real-time data does not 
align with these values in the system, an unexpected discrepancy is found, which is detected as a fault if it 
goes above a certain threshold. Using the correct FDD technique, the fault is then catalogued, diagnosed and 
resolved. 
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Figure 3 Data collection framework for FDD of smart buildings (Lazarova-Molnar et al., 2016) 
 

Work Package 1 (WP1) of the Brains4Buildings project focuses on FDD methods for smart buildings. WP1 aims 
to develop a FDD method based on a Diagnostic Bayesian Network (DBN). Data required for developing such 
methods can be categorised under subjective data from the occupants and objective data from the BMS.  

Subjective data from the occupants includes the occupant's interactions (door and window opening, 
light level adjustment, temperature adjustment) and the occupant's thermal comfort data. 

Objective data from the BMS includes measurements of supply and return temperatures, humidity, air 
pressure, flow, gas, electricity meter data, CO2 concentration, signals from actuators (opening/ clos-
ing), positioning of valves, etc. 

Of course, the objective system data is of higher importance here, compared to subjective data from occu-
pants, because the black-box, grey-box and white-box models specifically capture how the system is supposed 
to work. FDD analyses to what extent this is also the case. Subjective data from occupants may be additionally 
used to verify and further improve quality. 

3.1.2. Use case 2 - Occupancy and occupant behaviour predictions 
Occupant thermal comfort estimation, predicting occupancy, occupancy patterns and occupant behaviour are 
important aspects of the building operation. Predicting occupancy is important for demand-based HVAC control 
(Dong et al., 2018). Neglecting the true occupancy may result in overcooling, overheating and discomfort due 
to insufficient thermal and ventilation services (Wang et al., 2019).  
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Non-intrusive methods can be used to estimate occupancy and thereby provide more significant energy reduc-
tions than what would be the case when relying on traditional static schedules that do not take occupancy into 
account (Ardakanian et al., 2016). Motion detectors, CO2 level sensors, luminosity sensors, relative humidity 
sensors (Wagner et al., 2017), cameras and the users' WiFi connectivity (Martani et al., 2012) are generally 
employed for detecting occupancy. 

WP3 of the Brains4Buildings project focuses on occupant behaviour modelling. WP3 aims to develop occu-
pancy models and comfort models based on dynamic neural network models, for example. Data required for 
developing such methods can be categorised under subjective data from the occupant and objective data 
from BMS/ other IoT devices. 

Subjective data from occupants include occupant's interactions (door and window opening, light level adjust-
ment, temperature adjustment) and occupant's comfort data. Occupant feedback can be collected via mobile 
apps installed on smart phones / smart watches. Objective data from the BMS or from other IoT devices in-
cludes room temperature, CO2 concentration, relative humidity, outside temp, etc. 

3.1.3. Use case 3 - Energy flexibility and Demand Side Management 
Buildings nowadays rely on multiple energy sources such as on-site generation, electrical energy storage and 
thermal energy storage (H. Tang et al., 2021), rather than depending solely on grid power. This makes it pos-
sible to use multiple energy sources optimally to control the energy cost, as well as respond to the electricity 
grid needs. Future Building Energy Management Systems (BEMS) will require adapting to variations in the 
rate of energy production from renewable energy sources (Finck et al., 2019).  

MPC and EMPC controllers are recognised to optimally control the energy usage in residential and commercial 
buildings compared to traditional controllers. MPC and EMPC are increasingly experimented with on heating 
systems to minimise the energy cost and maximise flexibility. In that relation, historical weather data is re-
quired to make weather forecasting models, which are used to predict the ambient temperature and solar 
radiation (Finck et al., 2019). Temperature sensors for measuring room temperature, surface temperature, 
radiator temperature, heating supply and return temperature are required. Microcontrollers like Arduino are 
also used for acquiring data from temperature sensors and flow sensors. Artificial Neural Networks (ANNs) are 
used for weather forecasting. Also, some studies (Wagner et al., 2017) use surveys to collect data about win-
dow opening and closing in a residential building context. The range of historical data required for weather 
predictions is around 10 years of hourly data. Prediction accuracy can be increased by using weather data 
with a shorter interval, but with an increased computational time. 

Maximum demand (peak demand) charge constitutes a significant part of the energy cost of commercial build-
ings. Therefore, various mechanisms are utilised in commercial buildings to reduce this peak demand. Often, 
this is achieved by Demand Side Management (DSM) strategies like load shifting (Gellings, 1985), i.e. shifting 
load from on-peak to off-peak periods. DSM activities are categorised as energy efficiency, time of use, de-
mand response (DR) and spinning reserve (Palensky & Dietrich, 2011). Predicting the energy consumption is 
important to determine the day-ahead baseline power consumption (Cox et al., 2020; Lymperopoulos & Jones, 
2018).  

MPC is mainly used for DSM, where coordination of building loads and distributed energy resources are re-
quired (Cox et al., 2020; Široký et al., 2011; R. Tang & Wang, 2019). Different prediction methods are used to 
predict energy consumption in different load groups with different characteristics (Cox et al., 2020). Data re-
quired for such predictions includes historical data from electricity energy meters, electricity consumed for 
lighting, HVAC, plug loads etc., which are available from a BMS or EMS. Also, energy meter readings from 
photovoltaics (PV) and other renewable energy systems, as well as weather data are required.  

WP2 of the Brains4Buildings project focuses on energy flexibility. WP2 aims to develop models of HVAC and 
electrical systems in buildings, and energy prediction models. Data required for the energy flexibility use case 
mainly includes building models (data-based and physics-based), energy usage data, user behaviour data and 
data from external weather services. Historical BMS data plays a key role in this regard. Tools used for such 
tasks include Modelica, EnergyPlus, Matlab, Python etc. 

3.1.4. Use case 4 - Efficient HVAC control 

http://www.brainsforbuildings.org/


 

www.brainsforbuildings.org      15/66 

The fourth use case is directly related to efficient control of systems, in this case particularly HVAC systems. In 
general, control parameters are decided by engineers and architects during the design stage, often with limited 
knowledge of the actual building operation. A significant body of research shows that buildings do not operate 
as intended (Corry et al., 2015; Hu et al., 2016), leading to a sub-optimal operational performance. Therefore, 
a major part of the research aiming to improve building operation is dedicated to designing intelligent control-
lers that can "learn" from the collected operational data and adjust the control parameters according to the 
actual operation. 

The idea behind efficient control of HVAC systems is to reduce energy consumption while maintaining the 
indoor climate at an optimum level. HVAC control in traditional buildings is done using simple control logic that 
responds to set points and schedules (Ma et al., 2012). The latter control logic does not take the varying 
occupancy, weather patterns, or availability of renewable energy into account. More advanced controllers with 
feedback and forecasts are also available. They use proprietary control sequences to optimise the system 
performance at a higher level. However, their implementation is not widespread (Ma et al., 2012). In contrast, 
complex control strategies like MPC (Mayne et al., 2000) have gained traction as a strategy for HVAC control, 
since it provides the opportunity to incorporate predictions of weather, occupancy, renewable energy availa-
bility and energy price signals (Ma et al., 2012).  

3.1.5. Use case 5 – Facility management, monitoring and controlling building performance  
The potential of Building Information Model (BIM) for enhancing Facility Management (FM) is also widely dis-
cussed in the smart building domain (C. Eastman et al., 2011; Edirisinghe & Woo, 2021). While this use case 
is much less related to systems and control operations, plenty of building owners have this 5th use case as a 
very important use case in relation to the management of their building. Buildings need to be operated and 
maintained over time, including all the assets within these buildings. Also in areas other than buildings, this is 
a very important use case. For example, in the infrastructure domain (tunnels, railways, roads, etc), infrastruc-
ture assets are critical to be maintained properly. In those cases, every road or tunnel or railway station forms 
an important asset to be managed over time. Each of these assets consists of elements and components (e.g. 
wall, beam, foundation) that together constitute the asset. 

For smart buildings, the same technique applies and a building is typically decomposed then of smaller ele-
ments using a Building Information Model (BIM model). Such a BIM model is a simplified 3D representation of 
the building and its elements, with a set of properties stored for each element separately, and with several 
semantically rich relationships between the individual elements of the BIM model (e.g. space x is bound by y 
walls).  

While these 3D BIM models are commonly used in the design, engineering and construction phases (the typical 
AEC domain – Architecture, Engineering and Construction), they are much less often used in the operational 
phase of the building or asset life-cycle. Asset management in the operational phase instead is organised 
using asset management software and systems that are much more database-oriented. A typical 2D repre-
sentation of the building (or a schematic) shows the context of the building and gives access to the properties 
and relations of a specific component. That information can then be used by the asset manager or facility 
manager to make decisions for that asset (operation and maintenance). 

Data used for this use case typically contains the following: (1) a 2D or 3D schematic representation, using a 
2D drawing or a 3D BIM model or similar, (2) semantically meaningful data that stores more specific qualitative 
information about certain parts of the building, e.g. building functions, element names, element IDs, material 
properties, etc., and (3) usage data that is typically collected from sensors or time schedule databases (often 
tabular data or relational databases). 

3.2 Summary of data needs 
The above five use case categories require different data, and also rely on different computational architec-
tures and algorithms. For example, use case 5 is a very detailed use case where data consists mainly of se-
mantically rich data and 2D or 3D schematics. On the other hand, use cases 3 and 4 are much closer to control 
and therefore typically preferably do not include any 2D or 3D schematic data. On the contrary, those use 
cases are much closer to operations and control, and require access to signals and systems and direct com-
munication devices (e.g. WiFi access and routers). Finally, use cases 1 and 2 are entirely focused on monitored 
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data, including data from diverse end users with data on their own personal devices. These two use cases 
therefore rely on yet again very different data. 

Furthermore, the algorithms used are also very different depending from use case to use case. While use case 
5 requires mainly dedicated software and rule-based and object-oriented algorithms for facility management 
as managed mostly by the end user, use cases 1 and 2 are much more data-driven and relying on data ana-
lytics algorithms (machine learning). Use cases 3 and 4 are more control-oriented and rely often an interplay 
between incoming measured or monitored data and a control or simulation model. These use cases 3 and 4 
require then often a combination of data-driven and model-based approaches.  

Key use cases for data-driven smart buildings are use cases 1, 3 and 4. In those cases, research typically 
considers the use of white-box, black-box and grey-box (or hybrid) models to develop smart building applica-
tions. Software packages like Energy Plus, TRNSYS, DOE-2, ESP-r, Modelica have a physics-based approach 
and are used in the literature (Mugnini et al., 2020). These are white-box models, with the assumption that 
the person building these models in this software also understands all the rules that she is implementing in 
these models. Alternatively, it is possible to use training data for a considerable period and develop black-box 
models using Machine Learning (ML) algorithms. Such black-box models are also able to predict future values 
in a system and so enable monitoring, FDD and system control. These models rely less on physical equations 
that govern systems, and so they are less work-intensive and less expensive to build (compared to white-box 
models that are built by humans). The downside of these black-box models is that one typically does not know 
the reasons behind certain predictions: its rules and reasons are opaque to the user and can then be consid-
ered less trustworthy. ANNs, Support Vector Machines (SVM) and statistical regression are among the most 
commonly used black-box models (Mugnini et al., 2020). Finally, a combination of the above two models leads 
to hybrid models, which are also used in building energy modelling applications. A hybrid model can be a 
combination of partly white and black box models. A grey-box model (for example a RC-model) is physics based 
(however simplified) and parameters are trained based on historical data. These hybrid and grey-box models 
seem to be the most promising alternative for use cases 1, 3 and 4.  

To summarise, the data needed for different smart building applications can be categorised as follows (see 
also Fig. 4):  

• Metered time series data from sensors - This data is in the form of time series and is valuable for 
machine learning applications, time series analysis and forecasting, real-time monitoring, etc. 

• Data from external services - Data from weather services (e.g., temperature, relative humidity, solar 
radiation, precipitation, cloud cover, air pressure, wind speed), electricity grid (price signals). 

• Occupant feedback - Data related to occupant comfort, presence and behaviour (interactions with the 
building) is required by many smart building applications. These are collected from BMS sensors, IoT 
devices like smart phones, smart watches and surveys. 

• Domain expert knowledge - Control logic, operating sequence, schedules, and rules provide knowledge 
on how the systems are operated in a building. 

• Contextual data/ metadata - BIM models and drawings provide contextual and semantically rich infor-
mation about the building, materials, spaces, and construction parameters. 
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Figure 4 Summary of data needs 

3.3 Problems and limitations in data collection for smart building 
applications 

Collecting required data from buildings has been a challenge for developing smart building applications 
(Bolchini et al., 2017; Lazarova-Molnar & Mohamed, 2016, 2019; Wagner et al., 2017). It is nearly impossible 
to use the raw data as it is. It requires a major effort of pre-processing, depending on the quality of data and 
the application in which the data will be utilised. The decision of how to clean or not clean the datasets by 
handling missing and erroneous values and the choice of summarisation and aggregation strategies (Bolchini 
et al., 2017) has to be decided by the analyst. When the data gathering frequency does not match the appli-
cation's sampling frequency, filtering or down-sampling is required. Often, a considerable amount of human 
input is required for cleaning the data before using it for any application. Some of the most commonly encoun-
tered problems can be categorised as follows: 

• Unavailability of required data from the buildings – Many smart building applications rely on data (the 
five categories of data described above) and the most prominent data category is the metered sensor 
data from the buildings. However, this data can be unavailable due to many reasons such as absence 
of sensors, data not being recorded and/or stored, accessibility issues, etc. 

• Poor data quality - Many smart building application methods are data-driven and the quality of the 
collected data significantly affects the accuracy of the results (Lazarova-Molnar & Mohamed, 2016, 
2019; Ma et al., 2012). Missing samples, poor calibration and low-resolution also contribute to the 
poor quality of the data.  

• Unstructured naming conventions and tagging systems to represent syntax and semantics of data 
makes it difficult to understand and interpret the data (Chen et al., 2021; Suzuki, 2015). Also, when 
these metadata standards are not properly documented, it make users unclear about the provenance, 
quality, and purpose of data. 

• Limitations due to accessibility and privacy - Accessibility and privacy-related issues (Lazarova-Molnar 
& Mohamed, 2016) often comes as a barrier to access the data, especially when the data involves 
sensitive and/or personal data. When data policies and licenses are undefined, it makes it difficult for 
a researcher to access the data. 

These problems will always be present in existing data sets, and therefore it is of big importance that algo-
rithms and systems that consume such data are made as robust as possible and can take into account the 
less than ideal data quality that is present in every system and building. In particular in the case of real-time 
data handling, important measures need to be taken at the data ingestion point to make sure that correct 
actions are made by the system or platform.  
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4 MARKET STUDY OF DATA NEEDS IN THE REAL ESTATE SEC-
TOR  

Data needs in the real estate sector stem from the sustainability goals and more demanding occupants. The 
traditional model of managing buildings independently, working in a highly manual way, and relying on highly 
experienced experts to run everything smoothly, is changing. The occupant demands more comfort and con-
trol, and the facility management is more data-driven. Therefore, the real estate sector is now facing various 
data needs and requirements driven by the increasing customer expectations and sustainability goals. Availa-
ble sensors and various systems like BMS, EMS, and analytical platforms open new challenges and opportu-
nities in the real estate sector when it comes to harnessing the full potential of their data. An example of how 
diverse the available data sources in the real estate sector can be is shown in a study that reveals that a UK 
government organisation managed real estate buildings with 70 siloed systems (Maslesa & Jensen, 2019).  

To investigate the data needs and the requirements emerging from the real estate sector, we interviewed two 
real estate companies in the Netherlands that are inherent part of this Brains4Buildings project: Rijksvast-
goedbedrijf (RVB) and Philips Real Estate. Since the real estate companies have a good relationship with a 
maintenance company to deliver the required information to them, the maintenance company Heijmans which 
provides services for the real estate sector in the Netherlands was also interviewed (also part of Brains4Build-
ings project).  

4.1 Methodology 
The investigation method followed semi-structured interviews with the participants. A questionnaire was pre-
pared initially as a guideline for the interviews (see Appendix 1). Upon receiving the consent from the partici-
pants (See Appendix 3 for consent form), several interview sessions were conducted over a span of several 
months. As shown in Fig. 5, the questionnaire was organised in 5 themes, which a total of 33 questions. The 
themes for the questionnaire were use cases, data collection, data storage, data analysis and security. As 
such, this questionnaire aimed to collect data needs and requirements according to these 5 themes – as they 
were prepared in advanced by the B4B consortium and particular WP4 of this B4B project. 

 

Figure 5 Categories of questions 
 

After the interviews were done, a detailed analysis was performed according to the schema shown in Fig. 6. 
This first includes a procedure of transcribing, coding and categorizing. The results of that procedure are then 
analysed in a qualitative manner (method: qualitative analysis) and that leads to an understanding of the state 
of the art in practice, future data needs and requirements, and related barriers in the real estate sector. In the 
case of data needs, the survey has lead to the following needs, as will also be discussed later in this section 
in more detail: 

1. Compliance to legislation 

2. Occupant comfort and well-being 
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3. Asset performance 

4. Energy performance 

 

Figure 6 Qualitative research conducted on real estate data needs 
 

This section summarises the needs arising from the real estate sector, from the point of view of the three 
parties that were being interviewed. 

4.2 Current data needs in buildings 
The complete list of needs can be consolidated and reduced to four categories. The real estate sector relies 
on data in order to comply with legislation, ensure that the occupants are comfortable and safe in the building, 
ensure its assets are performing well, and the building's energy performance is good.  

4.2.1. Compliance to legislation 
Buildings in the real estate sector need to comply with the Dutch government regulations such as energy 
efficiency (ISO 50001 energy management), maintenance (ISO 55000 asset management), health and safety 
ARBO regulations (TNO, 2017), sustainability regulation MJA3 (RVO, 2022), etc. Also, some buildings seek 
compliance with building standards such as BREEAM (BREEAM - Sustainability Assessment Method, 2015) 
and WELL (WELL Building Institute, 2020). Other organisation-specific regulations include RVB BOEI inspec-
tions for fire safety, maintenance, energy efficiency & sustainability (Central Government Real Estate Agency, 
2018). For these purposes, buildings rely on data available from various systems such as BMS, EMS, and 
Asset Management Systems. 

Please refer to BRB-WP4-T4.1-AAA-Inventarisatie standaarden Brains for Buildings (B4B) for a comprehensive 
list of standards related to buildings. 

4.2.2. Occupant satisfaction and well being 
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A comfortable working environment needs adequate temperature, humidity, lighting, fresh air, CO2 concentra-
tion and sound, and it enhances the well-being of people working on the site. As described above, maintaining 
comfortable working conditions is also required by legislation (adhering to table A at the ARBO regulations 
(TNO, 2017)). Especially with the COVID 19 situation, much more focus has been put on air quality and venti-
lation. Occupants as well as building owners demand a well-performing ventilation system for health reasons. 
Hence, data about ventilation and air quality needs to be tracked, monitored, and assessed, including the 
control system. Furthermore, in relation to well-being, it is often the case that buildings monitor temperature, 
humidity, fresh air, and CO2 levels; yet they do not measure lighting and sound levels adequately. Lighting and 
sound (acoustics) however, have a very important effect on the well-being and comfort of users in a space. 

Although a wide area of research is dedicated to enhancing occupants' comfort and personalised environment, 
interview results show that this is rarely effectively implemented in practice. One of the respondents indicated 
that they rely mainly on a reactive approach, namely adjustments for temperature are made only in case a 
complaint comes in.  

Further, according to the respondents, the existing configurations of buildings do not support personalised 
environments (due to the number of zones and available hardware). Yet, if improvements of personalised 
comfort and well-being is targeted, these zones and hardware are needed. In such cases the system also 
needs to be linked to the data and preferences coming from individual users, which is not straightforward 
technically and also not in terms of General Data Protection Regulation (GDPR) and privacy. 

4.2.3. Asset performance 
Building owners need to make sure that their assets are performing optimally. Various techniques make sure 
that the assets are up to standards. 

• To understand which assets are most critical concerning the core process of the tenants, technical service 
provider Heijmans uses a technique called FMECA (failure mode, effects, and criticality analysis) to find 
out what the critical assets are and store that data in the maintenance management system. This tech-
nique is of use in particular for use cases 1 and 5 from the previous Section (Section 3). 

• The status of the asset is determined according to NEN2767. This is carried out by an inspector using a 
set of defined measurements and a recording method. This can be used to detect possible defects, their 
extent, and their intensity. A score is offered from 1 to 6, one being very good and six being very bad. A 
condition score of 3 is sufficient for most real estate portfolio holders or users. Technical service provider 
Heijmans uses O-Prognose (O-Prognose, n.d.) for this process. 

• Asset availability (downtime, malfunctions of the critical assets) is another asset performance index. Tech-
nical service provider Heijmans uses their maintenance management system where all assets are cap-
tured, and all maintenance information is made available. 

• Another essential asset performance matrix is the costs incurred for corrective, preventive, and planned 
(replacement of the asset) maintenance. Technical service provider Heijmans uses its maintenance man-
agement system to create a Multi-Year Maintenance Plan. 

• The location of the assets is based on BIM models, AutoCAD 2D drawings, and Excel sheets, as was also 
outlined for use case 5.  

4.2.4. Energy performance 
Building owners need data to know how well their buildings use energy. They need information about different 
KPIs that measure energy performance, such as energy consumption per m2. They also compare the perfor-
mance of buildings across the extensive portfolio of buildings. Energy consumption trends also provide insights 
into the growth or reduction of energy consumption compared to previous years.  

Energy labelling is also an assurance of good energy performance. For example, all offices in Philips Real 
Estate in Netherlands should have energy label C from the beginning of January 2023. For new rental proper-
ties, Philips is looking for a BREEAM Excellent certificate. In that way, the owners can avoid evaluating individ-
ual systems' energy efficiency since the labelling is already a good indicator. 
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As mentioned earlier, energy efficiency in buildings is also imposed by government regulations. For example, 
Philips Real Estate was part of the MJA3 (meerjarenafspraken), an agreement with the Dutch government that 
needs to deliver a 2% energy reduction per year. Showing compliance with energy regulations such as ISO 
50001 Energy management is an indicator that the building is energy efficient. 

Buildings are making way towards harnessing renewable energy (mainly solar PV) and reducing fossil fuel 
usage. For example, Philips Real Estate is determined to realise a transition of 75% of all energy consumption 
by renewable energy sources by 2025 and 90% by 2030. Therefore, building owners are finding smart ways 
to utilise renewable energy, such as agreements with the national grid to lower electricity prices during peak 
hours, battery storage, and solar for EV charging. This is therefore clearly related to Use Case 3 from Section 
3 above.  

For the above purposes, energy (electricity, water, gas) data is collected building-wise and sometimes equip-
ment-wise. 

4.3 Data collection 
Building owners depend on data collected from many sources in buildings to achieve the above goals. Follow-
ing sources and data are commonly used for the purposes mentioned above. However, the building owners do 
not usually influence the data models, naming conventions, metadata standards, and data storage tech-
niques. Such responsibility is passed on to the platform provider who is providing the systems.  

Table 1 Data sources and available data in buildings 

Source Available data 

Building Management System 
Setpoints, measurements e.g., temperature, alarms, control algorithms 

for installations, malfunction signals, valve positions, drawings, solar 
power generation 

Energy Management System Energy flows (gas, electric, water) 

Access control system Personal data, date, time, level of access 

Asset Management System Downtime, maintenance costs 

Transport installations 
(elevators) 

Operating hours, energy consumption, communication (elevator cage), 
malfunction signals 

BIM models, AutoCAD drawings Building information, location, area, installation data 

 

4.4 Future smart building needs for real estate owners 
Although the use of data-based decisions is in its early stage, the interviews with respondents showed that 
building owners are highly enthusiastic about making data-driven decisions for optimising the building opera-
tions. Building owners' requirements for a future smart building are shown below, categorised according to the 
use cases identified in the literature. 

Use case 1 – Fault detection and diagnostic analysis 

• Identify simultaneous heating and cooling automatically 

• Identify faults easily (autonomous) with less involvement by engineers using AI 

• Information-based decisions for maintenance, compared to scheduled maintenance. 

• Minimise excess energy usage by using AI for fault detection 

• Less maintenance by engineers (proactive monitoring, control, and automation) 

Use case 2 – Occupancy and occupant behaviour predictions 
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• Increase occupant comfort level by managing HVAC, lighting, security, space booking holistically 

• Provide flexible working spaces for occupants 

• Optimal use of building space to reduce energy consumption 

Use case 3 – Energy flexibility and Demand Side Management 

• Regulating heating and cooling systems based not only on the set points or the number of occupants 
but also on actual occupancy, weather, and electricity prices. 

• Smooth transitioning to aquifer thermal energy stores with electric heat pumps from gas-fired equip-
ment 

• Lower the electricity usage from the grid during peak hours by introducing batteries and agreements 
with the national grid 

• Benefit from cheap energy when it is available by using batteries for storing solar energy. 

• Understand where energy savings are possible using data. 

• Using energy KPIs to benchmark energy usage 

Use case 4 – Efficient HVAC control 

• Different climate for different rooms, if possible, if it is consuming less energy 

• Building's heating and cooling system needs to respond to the actual location of the equipment that 
generates heat 

• Automated decisions to operate the building in the most sustainable way 

Use case 5 – Facility management, monitoring and controlling building performance 

• Integrate asset management systems with energy management systems for detailed analysis of en-
ergy consumption of assets 

• Developing BIM models and digital twins to replicate the performance of the building 

4.5 Problems and limitations in using data in real estate buildings 
Based on the interviews, we recognised the following problems and limitations when utilising data to achieve 
the targeted goals. 

4.5.1. Data collection and management is the responsibility of the service contractor, not 
the real estate owner 

Usually, the data collection is a part of the service provided by a platform provider. Real estate owners do not 
interact directly with the data; they are rather interested in the information that they receive based on the data. 
Therefore, a sub-contractor is usually responsible for installing any additional sensors, data collection, storage, 
analysis, and delivering the information to real estate owners. 

Due to the absence of a common information model, building owners are forced to accept the platform pro-
vider's information model. Due to the changing nature of contracts with platform providers, the information 
model that one contractor develops does not agree with one another. As a result, the owner suffers from a 
lack of understanding of their data. 

Consequently, real estate owners (e.g. RVB) do not have a lot of information about the data model, set points, 
etc. It is considered the contractor's responsibility, and it appears to be a black box to them. According to RVB, 
real estate owners need to be able to manage their data, but awareness about the value of data and the 
position of data in business has to grow within the organisation before that. 

4.5.2. Fragmented solutions due to large portfolio and many stakeholders 
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With a large portfolio of buildings, the real estate sector has too many stakeholders involved. The needs and 
requirements of these stakeholders differ; services and, therefore, data collected by each party are frag-
mented, making a less clear overall picture to the real estate owner about how to optimally use available data. 
They need to meet the user's needs while also being energy efficient. They need to know where the set points 
need to be on the portfolio level for better energy management. Also, users are more demanding of data; for 
example, with the COVID 19 situation, users demand more data about safety, ventilation, and hybrid work 
form. They seek answers for, 

• Can we use available data to answer these new questions, or do we need new data? 

• What data do we need to implement new applications such as a ‘work place checker’ and use spaces 
optimally? 

• What data do we need to plan maintenance and cleaning for operational use? 

• How can we provide overall solutions rather than several different solutions? 

• How far can we go with available data, and what additional data do we need to collect? 

In summary, these questions come down to identifying the target application, reusing available data and col-
lecting any additional needed data.  

4.5.3. A large amount of manual work involved in data analysis 
The last identified problem is that a lot of manual work is needed to perform data analysis. This problem also 
relates to the (unsurmountable) "poor data quality" identified in the literature. The amount of manual work 
involved with data cleaning and analysis is identified as a major limitation and challenge. In RVB, data about 
energy usage in the buildings (gas, electricity) are analysed to indicate performance leakages and identify 
options for optimisation using R Suite twice every year, approximately for 100 buildings. Usually, manual data 
analysis is performed to plan preventive maintenance activities, annual operating plans and budget estimates, 
and it involves a lot of manual work. 

Data validation is also a manual process. Data validation methods are used and indispensable, e.g. checking 
if the data from one day is different compared to the day or week before, and trying to find out why there is a 
difference. Automatic methods can be used to calculate values and make comparisons, but results from these 
methods often need to be validated manually. For instance, if energy use data are exactly two or five times 
higher than before, there can either be a fault, or any other explanation may be in place (e.g. values may have 
been be set somewhere from a meter). Another limitation, according to RVB, is that there is no direct connec-
tion between RVB (data) storage and the analytics environment. Data analytics platform R Suite is hosted in 
the government's data centre. 
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5 STATE OF THE ART REVIEW OF EXISTING DATA SOURCES AND 
DATA PLATFORMS IN BUILDINGS 

The built environment is a complex interconnected system, and the list of data sources in a building is poten-
tially endless. We try to include the commonly available systems (non-exhaustive) as available in the literature 
and living labs selected for the Brains for Buildings project. Throughout a building's lifecycle, different forms 
of data are used for different purposes. In this report, we focus more on the operational phase of a building 
and the data that is important in this phase.  

Main sources of data in the operational phase of a building include: 

• Building Management systems (BMS) 
• Energy Management systems (EMS) 
• Smart meters and IoT systems 
• Asset Management Systems  
• Building Information Models (BIM) 
• ICT systems and equipment 
• External services such as weather 
• Post occupancy surveys  

However, the systems installed, and their functionalities differ from building to building. Available data in these 
sources are described under two categories, operational data and contextual data. Operational data can also 
be referred to as dynamic data. This data is usually available as time-series data continuously streaming from 
sensors. Contextual data refers to static data such as building information models, floor plans, semantic de-
scriptions of sensors and devices etc. These two categories cannot be described distinctly since many systems 
described below consist of both categories.  

5.1 Operational data 
5.1.1. Building Management System  

The Building Management System (BMS), also called Building Automation System (BAS), is the dominant 
source of information in buildings. It is used for monitoring and controlling mainly electrical systems like light-
ing and power, mechanical systems like HVAC, fire, elevators and securing systems like access control. In 
general, the main objective of a BMS is to fulfil the occupants' needs while maintaining energy consumption 
at a minimum. Operational data available from a BMS includes:  

- Occupant comfort-related data - Air temperature, humidity, CO2, VOC, CO, air velocity, mean radiant 
temperature, light level, occupancy  

- Energy consumption related data - water/gas/electricity consumption 

- Machinery characteristics - refrigerant temperature, electrical machinery current, voltage, power fac-
tor, machinery vibration, return and supply air temperature, set points 

Other than that, contextual data like floor plans and asset schedules are included in a BMS. Figure 7 shows 
the screenshot for a SCADA system as managed by Kropman InsiteView. This interface shows both the dynamic 
data (active state of individual components in the system) and the static data (system structure and properties 
and names of system components). In this case, the static data is represented using a typical HVAC system 
schematic. Other BMS systems can use other representations, such as 2D floor plans or 3D model views in 
the case of facility management use cases (see Section 3). 
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Figure 7 Snapshot of Kropman InsiteView SCADA System 
 

5.1.2. Smart devices and IoT systems 
There are many smart devices in buildings with the widespread adoption of IoT technologies. For example, 
smart energy meters, air quality sensors, smart phones, and watches collect and communicate data using 
Thread, WiFi, Bluetooth, Zigbee, BLE etc. IoT devices communicate data acquired from sensors and actuators, 
and communicate these data to the cloud IoT platform using various communication standards like GPRS, 
WiFi, CoAP, MQTT and HTTP. Matter is the latest protocol to connect to IoT devices. It is an initiative of the Con-
nectivity Standards Alliance, and developed through collaboration amongst all the leaders of the IoT industry. 
Fig. 8 shows the ecosystem of IoT including communications, data storage and analytics. 

 

Figure 8 Smart devices in buildings (Pethuru Raj, 2017) 
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Other systems include asset management systems, maintenance management systems, access control sys-
tems etc. However, BMS and IoT devices make the most part of metered sensor data and they are valuable in 
developing data driven methods, especially related to use cases 1, 2, 3 & 4. 

5.2 Building contextual data/ Semantic information 
5.2.1. BIM Models 

While the operational data included above mainly concerns time series data, another invaluable source of 
information is contextual information, which is one of the main sources of information in use case 5. Tradition-
ally, the construction industry is known to be "document-centric" (Pauwels & Petrova, 2020). Building infor-
mation such as structural, architectural and MEP drawings, materials schedules, device characteristics, regu-
lations, specifications, are usually available in the form of 2D drawings and documents. The building Infor-
mation Model (BIM) (C. M. Eastman et al., 2019) is now an essential component of the Architecture Engineer-
ing and Construction (AEC) industry. An example can be seen in Fig. 9 for part of the Atlas building in TU 
Eindhoven. 

 

Figure 9 BIM Model of Atlas Building TU/e  
A BIM model can be defined as the digital representation of a building that contains semantic information 
about the building elements (Pauwels & Petrova, 2020). A properly developed and managed BIM model is a 
data source of high fidelity. It includes geometry, spatial location, and a broad representation of metadata 
about the properties of the building, its subsystems, devices, MEP equipment, etc. (C. Eastman et al., 2011). 
These may be available in a closed data format (e.g., Revit) or neutral data format (e.g., IFC standard). What 
does not fit in these BIM models are time-series data (dynamic data), so the BIM model is primarily used as a 
static source of data. 

5.2.2. Sensor Metadata  
In a sensor measurement, its value and timestamp are the key components. However, its metadata is equally 
important in many aspects.  Metadata means data about data. Properties of different equipment, sensors and 
controls used in buildings are represented using metadata. For example, a sensor's device id, function, loca-
tion, type, units, manufacturer, relationship with other systems, and any description of the measurement are 
its metadata. An example of such BMS sensor metadata is shown in Figure 10 for the BMS of Atlas Living Lab. 
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Figure 10 BMS Sensor Mapping Table 
It has been widely discussed in the literature that the available metadata is ambiguous, building and vendor-
specific and not machine-readable in many cases (Bhattacharya et al., 2015; Mishra et al., 2020; Stinner et 
al., 2019; Suzuki, 2015). This makes it difficult to maintain the uniformity of the sensor and hinders the de-
velopment of applications for analytics without expert prior knowledge of existing systems (Bhattacharya et 
al., 2015). Further, due to the lack of meaningfulness in the labels, the knowledge that can be inferred is 
limited.  

Brains for Buildings project primarily aims at developing solutions to improve the overall performance of build-
ings by developing solutions for fault detection and diagnosis (FDD), energy flexibility and improving user ex-
perience. More often than not, these applications need knowledge across multiple systems in a building, for 
example, data from HVAC, fire, lighting, access control system etc. Above systems are usually installed by 
different vendors, and therefore follow different naming conventions, making it difficult to understand the 
data. If the metadata is not properly documented, then a lot of interpretation work needs to happen. And even 
if the metadata is well-documented, the different buildings and systems use diverging standards and conven-
tions, leading to lots of manual work to adapt procedures and systems from building to building. An example 
naming convention for a room temperature sensor in Atlas Living Lab is 11NR008TE-001TRL which is a tem-
perature sensor (TRL) on the 8th floor (8). This information is available from the mapping table shown in Figure 
10, yet often needs to be manually assembled and used. 

5.3 Data formats  
Most common data formats for exchanging operational time-series data are CSV (Comma Separated Values), 
JSON (JavaScript Object Notation), Excel (xlsx), XML and pdf. It is much more common that data extracted from 
a local BMS follows xlsx or CSV format. The source data is typically stored in relational data stores (SQL), yet 
those stores are seldom directly available from the system provider. These SQL-compliant databases are at 
best accessible through an API owned by the vendor; hence, users are often limited to these CSV and XLSX file 
formats. An example data set extracted from the Atlas Living Lab at TUe is shown in Fig. 11. The first row shows 
the sensor labels that need to be matched with the labels in Fig. 10. 
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Figure 11 Atlas Living Lab data extracted from BMS in excel format 
 

It is very common for an API to return data in JSON format. JSON files are machine-readable and human-
readable and transport data in key-value pairs. For example, a JSON response (for a request of data sources) 
from Kropman InsiteView takes the format shown in Fig. 12. 

 

Figure 12 JSON response from Kropman InsiteView API 
 

Some API responses take XML format, if they are implemented using the older SOAP web service technique. 
For example, Fig. 14 shows the Envision Manager API response for energy consumption in a particular location. 
Envision Manager is the smart lighting control system in the Atlas Living Lab, TU Eindhoven. It provides a SOAP-
based web service for getting and applying illumination levels, correlated colour temperature (CCT) etc. In 
addition to the SOAP API (XML) or the REST API (JSON), these applications often provide also a web interface 
where users can log in and visualise the data in dashboards, as shown in Fig. 13. 

Get Data sources Request - GET 

https://ivs.kropman.nl/insitereports/data.php?action=getdatasources&token=c41b0-
nzyzzje0ndcynd&sort=id 

Get Data sources Response 

1. { 
2.   "success":true, 
3.   "datasources":{ 
4.     "26":{ 
5.       "name":"Kropman Breda [IV32]", 
6.       "type":"InsiteView History", 
7.       "datapoints":{ 
8.         "1":"Buitentemperatuur NO [Weerstation] 1-2TT2 [\u00b0C] [3.1.1537]", 
9.         "2":"Buitentemperatuur ZW [Weerstation] 1-3TT1 [\u00b0C] [3.1.1538]", 
10.         "3":"Aanvoertemperatuur [C.V. ketel] [\u00b0C] [3.1.1539]", 
11.         "4":"Retourtemperatuur [C.V. ketel] [\u00b0C] [3.1.1540]", 
12.         "5":"Ber.aanvoertemperatuur Ketel [C.V. ketel] [\u00b0C] [3.1.53021]" 
13.       } 
14.     } 
15.   } 
16. } 
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Figure 13 Envision Manager User Interface 
 

 

Figure 14 API response of the Envision Manager Lighting control system in XML 
 

5.4 Integrating heterogeneous systems and data sets  
Smart building applications rely on different systems such as HVAC, lighting, alarms, energy meters, utility, 
weather services, smart devices, etc., that normally generate time-series data. Other than the time-series data, 
Building Information Models (BIM) (C. M. Eastman et al., 2019), IFC files, and product databases also contrib-
ute to the data in the built environment. However, there is little interaction between these islands of data 
(Curry et al., 2013; Hu et al., 2016) due to their heterogeneity. Lack of interoperability has been identified as 
a technical barrier that hinders the research and development of smart building applications. Therefore, a 
significant body of research and commercial parties investigate how these data silos can be integrated. To 
that end, various techniques have been developed, such as semantic tagging, data schemas and ontologies 
for AEC and BAS industry. The below sections provide some documentation and indications in these techno-
logical directions. 

5.5 Data Models and Schemas 
Due to the heterogeneity of building data, a data model is useful to define data points in an understandable 
and reusable manner. For example, IFC (Industry Foundation Classes (IFC) - BuildingSMART Technical, n.d.) is 
a standardised data model that is intended to describe architectural, building and construction data.  

5.5.1. IFC 
IFC is an open international standard for BIM data that are exchanged and shared among software applica-
tions used by the various participants in the construction or facility management industry sector (ISO - ISO 
16739-1:2018 - Industry Foundation Classes (IFC) for Data Sharing in the Construction and Facility 
Management Industries — Part 1: Data Schema, n.d.). It is also a platform-neutral open file format specifica-
tion. 
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However, not all aspects of the built environment can be modelled in IFC. For example, a crucial part of the 
operational phase of a building is the dynamic sensor data, which is ideally not represented using IFC. Another 
point is that, although the IFC standard describes many common HVAC, lighting, and sensor devices, they are 
not capable of representing the context of the devices contained within (Fierro, 2021). IFC is relatively unpop-
ular in the BAS industry and is more used in the context of BIM and the AEC sector for engineering and con-
struction operations. Therefore, several other data models have been developed, and some of them are dis-
cussed in what follows. 

5.5.2. Other Data models 
1. iotschema.org (Full Hierarchy - Iotschema.Org, n.d.) is an extension of schema.org that provides vo-

cabularies to enable semantic interoperability for connected things across diverse IoT ecosystems. 
These vocabularies are developed by "W3C Community Group Schema Extensions For IoT". 

2. Google Smart Home provides a schema for IoT devices and their actions for a smart home. 

3. openHAB is an IoT platform for Smart Homes. It proposes a semantic model to logically structure the 
home and equipment (Semantic Model | OpenHAB, n.d.) 

A plethora of other data models are also available, especially for IoT applications, which are not included in 
the above list for simplicity. The landscape of IoT is diverse in terms of communication protocols and data 
models for data exchange, making it a challenging situation for developers. Web of Things (WoT) aims to in-
crease flexibility and interoperability for cross-domain IoT applications by introducing a simple interaction ab-
straction based on properties, events, and actions (Documentation - Web of Things (WoT) (W3.Org), n.d.). 

"Smart data Models" (Smart Data Models, n.d.; Smart Data Models - FIWARE, n.d.) is an initiative that aims to 
develop harmonised data models to support the adoption of compatible common data models. This smart 
data model includes three elements: the schema (technical representation of the model defining the technical 
data types and structure), the specification (a written document for human readers) and examples. 

5.6 Semantic Tagging  
5.6.1. Project Haystack 

Project Haystack is an open-source initiative to develop tagging conventions and taxonomies for building equip-
ment and operational data. Haystack is a popular metadata standard among many BAS vendors. Haystack 
corporation includes industry partners from Honeywell, Siemens, etc. Haystack developed standardised tags 
for describing data giving the data more meaning by adding metadata to it. This makes data more discoverable 
for other applications. These tags describe the metadata, and the tags can be applied at the device level, 
controller level or server level. A full list of tags is available at Project Haystack (project-haystack.org).  

The following example shows Haystack tags applied to a temperature sensor in an air handling unit. A set of 
name: value pair (such as unit: "°F") is known as a dict (dictionary). Tag names without a value (such as dis-
charge, air, temp) are called markers. These marker tags can also be combined (such as temp-sensor).  

A Haystack representation can be encoded in file formats Zinc, JSON, Trio, CSV or RDF. An Air Handling Unit 
(AHU) described in Trio format is shown in Fig. 15. In this example, an element is described with identity id:@a-
0001. The description of the equipment is given by dis:Alpha Airside AHU-2. Two tags “ahu” and “chilledWa-
terCooling” describe the chilled water system. Reference to a chilled water plant is made using the chilledWa-
terRef:@a-07b8 line. Tags that follows “elec”, “equip” and “hotWaterHeating” describe the hot water system 
which is referred by using the reference hotWaterRef:@a-07da. 
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Figure 15 Haystack example of tagging of an Air handler Unit in Trio format  
(Source: Project Haystack – Examples) 

5.7 Ontologies in building domain 
Ontologies are used for integrating heterogeneous databases due to their independence from lower-level data 
models (Gruber, 1993). In contrast to data models, these ontologies are independent of particular applications 
since they consist of generic knowledge that can be reused by different applications (Spyns et al., 2000). 
Several vocabularies and ontologies such as BASont (Ploennigs et al., 2012), SAREF (Daniele et al., 2015), 
SSN (Haller et al., 2018), RealEstateCore (Hammar et al., 2019), Haystack (Project Haystack - Tags, 2020), 
and Brick (Brick Schema Building Blocks for Smart Buildings, 2019), BOT (Rasmussen et al, (2017)), PROD-
UCT, and PROPS etc. have emerged to fulfil different information domains in different phases in the building 
lifecycle. However, to the best of the authors' knowledge, Haystack, Brick and REC ontologies are the ones 
that are most commonly recognised by BAS practitioners and therefore, they are discussed in brief in what 
follows. 

5.7.1. Haystack Ontology 

The Haystack ontology provides standardised modelling of site, space, equipment, point, device and weather 
entities (Points – Project Haystack, 2022), which are described briefly below.   

• site: single building with its own street address 
• space: location or zone within a site 
• equip: physical or logical piece of equipment within a space 
• point: sensor, actuator or setpoint for an equip 
• weatherStation: weather station observations 
• device: computers, controllers, networking gear 

An example AHU representation using Trio encoding was shown earlier in Fig. 15. When modelled using the 
Haystack Ontology, the result is the data representation shown in Fig. 16. The Haystack ontology uses the 
ph:hasTag relationship to represent the tags associated with the equipment. To define the relationships with 
other equipment, it uses phIoT:chilledWaterRef, and phIoT:hotWaterRef. Similar other relationships and prop-
erties can be represented as preferred, leading to a graph of data and metadata. 
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Figure 16 Haystack example of representing an Air handler Unit using Haystack Ontology in Turtle format 
(Source Project Haystack – Examples) 

 

5.7.2. Brick Ontology 
The Brick ontology is designed with a focus on supporting energy applications based on BMS in commercial 
buildings. It is capable of representing physical, logical and virtual assets in buildings and the relationships 
between them. Brick uses OWL and RDF standards to define the ontology. Fig. 17 shows an example that 
represents common HVAC components using Point, Location and Equipment classes and their relationships 
in Brick schema. 

 

Figure 17 Modelling with Brick (Brick, 2022) 
 
Figure 18 shows a real-world example of representing an AHU using Brick.  

 

Figure 18 Brick representation of an example AHU (Source: Brick Soda Hall) 
 
A comparison of Haystack and Brick ontologies is done by Quinn & McArthur (2021), revealing the following 
important facts. 

• Both ontologies are machine-readable since they are serialised in standard formats. 
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• Freedom to use flexible semantics allows Haystack to represent a variety of buildings that falls outside 
the norm. However, this flexibility compromises the portability of smart building applications across 
buildings. 

• Since Brick represents concepts in a prescribed manner, it allows smart building applications to be 
portable across buildings.  

• Haystack uses the concept of Tags to represent semantic concepts, and any inconsistency of repre-
sentations leads to difficulty in reading and relating the tags to real-world meaning. When the ontology 
is not human readable, it becomes difficult for a user to query. 

• Brick supports interoperability with other ontologies such as BACS, SAREF because they all use the 
same ontology language (RDF format). This allows for making more holistic smart building applica-
tions. Haystack is still in the process of serialising to RDF. 

5.7.3. RealEstateCore Ontology (REC) 
RealEstateCore is an OWL ontology that enables data integration for smart buildings. REC is developed by a 
consortium including some of the largest real estate companies in Northern Europe. REC focuses on merging 
and bridging four domains: Business administration, Digital representation of the building's elements – BIM, 
Control and operation of the building BMS, and IoT technologies.  

The example in Fig. 19 shows three VAV devices VAVL1.01, VAVL1.02, and VAVL1.03 that belong to an AHU, 
AHUL1.01. Their associated sensing is defined using the hasCapability relationship.  

 

Figure 19 RealEstateCore Ontology example usage in Azure Digital Twin (Source : realestatecore.io) (Hammar 
et al., 2019) 

 
Above three ontologies as well as other ontologies that apply to the Smart Building domain are shown in Fig. 
20. This diagram shows that IFC and Haystack take an object-oriented approach while other ontologies such 
as SOSA, SSN, OSPH, BOT, ifcOWL, SAREF and Brick take a Descriptive Logic approach.  
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Figure 20 Ontologies in the smart building domain (Quinn & McArthur, 2021) 
 

5.7.4. Industry Alignment with Metadata Schemas 
Literature reviews and overall market studies indicate that the Brick ontology and Haystack standard have 
gained traction in the building industry and are the most popular metadata standard in the building industry.  

• According to the Brick Schema website, Johnson Controls and Schneider Electric are commercial mem-
bers of the Brick consortium. 

• According to the Project Haystack website, its board members include Conserve It, J2 Innovations, 
Legrand, Lynxspring, Siemens and SkyFoundry. They also have 23 associate members, including KNX 
Association and Tridium. 

• ASHRAE's BACnet Committee is collaboratively working with Project Haystack and Brick Schema 
(ASHRAE, 2018; Haystack Connect | The Place for the Project Haystack Community to Network, Share, 
Create Syner-Gy, and Generate New Business Opportunities, n.d.). According to the ASHRAE website, 
"the collaboration will result in unification and standardisation enabling interoperability on semantic 
information across the building industry, particularly in building automation. The unified effort is 
meant to ease the exchanging of data over established communication protocols like Haystack web 
services or BACnet, and when applied on data stored in databases and cloud applications, will support 
machine interpretation of the semantics of such data" (ASHRAE, 2018). 

RealEstateCore also has an ecosystem certification program for companies, organisations, and individuals 
that provide applications based on the RealEstateCore API (CERTIFICATION - RealEstateCore, n.d.).  

5.7.5. Semantic graphs 
A semantic graph can be used to describe a building and its systems using standard syntax and semantics. 
This semantic graph can then be used to identify the relationships and properties of each component in the 
building. An example of a semantic graph of Atlas Living Lab in TU/e is shown in Fig. 21 Part of the graph 
representation of Atlas Living Lab. This graph has been described using Brick ontology and BOT ontology. 
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Figure 21 Part of the graph representation of Atlas Living Lab 
 

5.8 Data platforms for smart buildings 
Penetration of Digitalization, the Internet of Things, Digital Twin, Big Data, Cloud Computing, and Artificial In-
telligence in the built environment is increasing. There are numerous heterogeneous connected devices and 
controllers within a building that need to be coordinated for the above advancements. This coordination is 
beyond the capability of traditional BMSs, and therefore, buildings rely on other software solutions, referred to 
as middleware. Middleware resides between the hardware devices and other data sources that produce data 
and the applications using these data (Prakash et al., 2020).  

- Vendor-specific software: 

Some of these solutions originate from well-known building industry market leaders such as Honey-
well, Schneider, Johnson Controls, Siemens etc. One example is EcoStruxure™ Building Advisor from 
Schneider. Vendor-specific software solutions primarily allow integrating their own devices and appli-
cations. 

- Vendor-neutral Platforms: 

Some other companies provide software and analytics that are interoperable with hardware and sen-
sors from other vendors. One such widespread solution is the Tridium Niagara Framework. It facilitates 
an open, no vendor lock-in framework to connect different systems and is supported by a community 
of System Integrators and Developers. Other vendor-neutral IoT Platforms include ThingSpeak, The 
Things Network, FIWARE, openHAB and Tuya, which allow the integrating smart sensors and meters 
from different manufacturers. 

- Open-source platforms: 

Furthermore, some efforts aim to create open data platforms, making such data platforms available 
to the public. Three such examples of open-source data platforms are BEMServer, XBOS and BEMOSS. 
In what follows, we try to briefly identify their main features according to authors, but it is not the 
intention of this writing to confirm their functionality. 
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BEMServer (Bourreau et al., 2019; Home - BEMServer, the World’s Premier Open Source Building Energy 
Management Platform, n.d.) is an open-source platform with, 

• Storage techniques for the building data model, time-series data and events. 
• A data model based on IFC and Haystack called BEMOnt 
• Data pre-processing 9unit conversion, time series resampling, data cleansing) 
• A REST API 
• Data visualisation tool based on Grafana 

According to XBOS (Fierro & Culler, 2015; XBOS Overview - XBOS Docs, n.d.), this open-source building oper-
ating system provides the following features.  

• Hardware Presentation Layer 
• Canonical Metadata Definition, Storage, and Usage 
• Control Process Management 
• Building Evolution Management  
• Security: Authorisation and Authentication 
• Scalable UX and API 

BEMOSS (BEMOSS, 2015) is also an open source software designed for small and medium sized commercial 
buildings featuring an open source architecture, interoperability, scalability, and security. It supports Zigbee, 
Modbus, BACnet, HTTP, openADR and Smart Energy protocols. 

IEA EBC - Annex 81 - Data-Driven Smart Buildings, Subtask A also aims at developing Open Data and Data 
Platforms to develop methodologies that support the implementation of real-time Open Data sharing in build-
ings. 
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6 MARKET STUDY ON EXISTING DATA AND SMART BUILDING 
DATA PLATFORMS 

6.1 Introduction 
Building owners continuously seek better monitoring and controlling mechanisms, analytic algorithms, and 
intelligent devices for delivering services that make buildings more energy efficient. These functionalities can-
not be met by using legacy BMS systems due to their limited integration capabilities; their analytics are inad-
equate for the job, they lack the required software applications, and they have legacy user interfaces (Sinopoli, 
2016). Therefore, most buildings use services from building platform providers that have solutions to integrate 
multiple systems and provide useful information via analytics, reporting and data-driven applications.  

Building solution platforms have been developed with a variety of features and complexity to handle the com-
plexity of modern buildings. The global smart building market is dominated by giants such as Honeywell, ABB, 
Johnson Controls, Schneider Electric, Siemens etc. Priva is also dominant in the Netherlands. These systems 
provide a variety of data in diverse formats and approaches. In this Section 6, the aim is to evaluate these 
data sources and find out to what extent they can respond to the data needs and requirements listed in Section 
3 and 4. 

In chapter 3 and 4, we identified what the data needs and requirements in buildings are. To investigate to 
what extent software solutions and systems are able to supply the needed data, we interviewed three platform 
providers in the Netherlands that are part of the B4B project: Kropman, Cloud Energy Optimizer and Simaxx 
Technologies. Hence, the results in this Chapter are composed using a method that is identical to the method 
used in Chapter 4, only with different participants and different questions. Semi-structured interviews were 
held with the participants. A questionnaire was prepared initially as a guideline for the interviews (see Appendix 
2). These questions aim at understanding existing and emerging data needs, data types, data collection and 
analysis methods, security, etc. Upon receiving the consent from the participants (See Appendix 3 for the 
consent form), several interview sessions were conducted. After the interviews, a qualitative analysis was 
again performed, similar to what was documented in Section 4, to understand the state of the art, future 
directions and barriers when using data in the smart building sector.  

This section summarises the needs arising from the platform providers from the perspective of the three par-
ties that were interviewed. 

6.2 Solutions available in smart building platforms 
The main functionality of a smart building platform provider is to collect, analyse and provide meaningful in-
formation to the end-user of the building. Some of the functionalities identified by the platform providers who 
participated in the interviews are described below according to the five use cases identified from the literature 
and market study in Chapter 3. 

6.2.1. Use case 1 - Fault detection and diagnostic analysis 
Detecting and diagnosing problems in buildings can be done with the help of people with expert knowledge. 
But this is time-consuming and error-prone work. Automated diagnostics can use rule-based techniques such 
as maximum/minimum limits and other machine learning algorithms to detect faults. These applications use 
algorithms that search for anomalous data that represent faults and suggest possible causes and remedies. 
They use alerting via email or alarm systems to indicate the faulty situation. 

Another fault detection case is automatic checking and reporting of energy usage during the weekend and 
after office hours provide insights into anomalous energy consumption in a building. When the energy con-
sumption is outside the predefined boundaries, the system gives a warning.  

Cloud Energy Optimizer uses Machine Learning to predict the future indoor temperature in the building and 
then generate a warning if the building is to become too cold. Here, the temperature setpoint is not fixed and 
is determined based on the outside temperature.  
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The reliability of the data is ensured by mainly checking its magnitude. If a reading remains the same through-
out the day or if the value exceeds set limits, that could indicate a faulty reading.  Detection of faulty meter 
reading is often performed using Machine Learning.  

6.2.2. Use case 2 - Occupancy and occupant behaviour predictions 
No applications were found under this use case. Collecting and analysing occupant related data was not very 
common among the platform providers. The practitioners that we interviewed mentioned that it is due to the 
lack of such requirement from the building owners. Further research would need to look into existing systems 
to support this use case. 

6.2.3. Use case 3 - Energy flexibility and Demand Side Management 
Forecasting services predict future energy consumption values based on historical data. Energy consumption 
forecasts use outside weather data, historical energy usage data, occupancy, and indoor climate data. One of 
the primary uses of forecasting is to manage energy resources cost-effectively. When an installation has mul-
tiple energy sources like Solar PV, Battery Storage, and thermal energy storage, these forecasts can be used 
to plan the energy mix most economically. Fig. 22 shows an example from Kropman where they use ten weeks’ 
average energy consumption data to predict and benchmark future energy consumption. 

 

 

Figure 22 Kropman uses the past ten weeks' average energy consumption to benchmark and predict future 
energy consumption. 

 

6.2.4. Use case 4 - Efficient HVAC control 
Depending on the season and the outside temperature, comfortable indoor temperature can be different. 
Controlling the HVAC system efficiently needs collecting this data and fine tuning the indoor temperature setpoints 
to optimize the energy consumption (example in Fig. 23). This gives an insight into whether the building is 
overcooling or undercooling, thereby making room for improving comfort and energy usage. 
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Figure 23 Electricity consumption based on the outside temperature 
 

Other than the weather data and indoor temperature data, important information such as location of the sen-
sors, orientation of the building, area of the building, building material, and volume of concrete are considered 
essential inputs by the platform providers to calculate the optimum control strategy for HVAC systems. Fig. 24 
shows how Cloud Energy Optimizer estimates the amount of thermal energy stored in walls and floors. The 
amount of 'stored' thermal energy in the building mass determines how much heating is required in the up-
coming period. This is an important input because the thermal energy embedded in building materials change 
according to the outside temperature. 

 

Figure 24 Using thermal energy embedded in walls/floors to predict next-day energy usage. This allows 
taking seasonal variations n the temperature into the predictions. Source Cloud Energy Optimizer 

 

6.2.5. Use case 5 – Facility management, monitoring and controlling building performance 

These smart building platforms provide data analysis, reporting and dashboards to show compliance with reg-
ulations. Functions that they offer include, monitoring and reporting of Legionella, monitoring and reporting for 
energy compliance requirements such as periodic reporting to comply with government regulations on the 
usage of ATES (heat and cold storage), system, energy regulations from RVO to report energy usage, BREEAM-
NL and Reports for social housing to comply with warmteWET rules on the supply of heat to consumers. Fig. 
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25 shows a dashboard for monitoring Legionella, where the warm water temperature is continuously moni-
tored for its maximum, minimum and average temperatures. 

 

 

Figure 25 Dashboard for monitoring Legionella by Kropman 
 

Aquifer thermal energy storage (ATES) is the storage and recovery of thermal energy in the subsurface. ATES 
is applied to provide heating and cooling to buildings. Storage and recovery of thermal energy is achieved by 
extraction and injection of groundwater from aquifers using groundwater wells. Buildings need to monitor the 
extraction of this thermal energy by law, and they are monitored as shown in Fig. 26 in the case of Kropman. 
 

 

Figure 26 Monitoring and reporting Aquifer Thermal Storage by Kropman 
 

Monitoring and reporting of indoor environmental parameters such as CO2 levels and temperature to comply 
with standards for indoor climate is much common in buildings. Fig. 27 shows a dashboard for monitoring CO2 
levels and Figure 28 shows the indoor temperature monitoring dashboard. 
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Figure 27 Monitoring CO2 levels by Kropman 
 

 

Figure 28 Aggregation of room temperature in a dashboard by Kropman 
 

Displaying historical average energy consumption of the building on a yearly, monthly, daily and hourly basis 
is shown in Fig. 29. This data is available from the BMS or EMS. 
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Figure 29 Usage of electricity, water, gas and CO2 emission by Kropman 

 
Collecting the data from the grid operator, EV charging stations (such as newMotion), and solar PV generation 
companies via their APIs periodically gives an overview of how much energy the solar panels are producing and how 
much energy the EVs are consuming (Fig. 30).  
 

 

Figure 30 Renewable energy and battery storage dashboard by Kropman 
 
The dashboard in Fig. 31 shows monthly KPIs for temperature, humidity, air quality, electricity, gas and CO2 
production over the past 12 months. Each KPI is determined based on adjustable limit values that are agreed upon 
with the customer. 
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Figure 31 KPI monitoring dashboard by Kropman 
 

In conclusion, the majority of the applications available from the platform providers tend to be on the side of  
monitoring and reporting (use case 5). We also note that they are currently using MPC and Machine Learning 
techniques for forecasting energy demand and maximising energy flexibility (use case 3). Using Machine Learn-
ing for fault detection and diagnosis of HVAC systems (use case 1) is actively being investigated at the moment. 
While the available data from BMS are sufficient for improving performance, there is a lack of data related to 
the occupant (Use case 2). More data about the occupant behaviour and indoor environmental parameters 
can be used to improve the indoor environment quality, predict occupancy, and use spaces optimally.  

6.3 Data Sources and data collection 
Smart building applications depend on data collected from the building and external services. Data is collected 
from local building management systems, EMS, IoT devices etc., using various protocols such as BACnet, Mod-
bus, MQTT, and OCPI (see Fig. 32). For other closed protocols used in BMSs like PRIVA, Schneider, and Johnson 
Controls, connectors and plugins are used to extract data. One platform provider (Simaxx) mentioned that 
although they used their drivers, now they are using libraries provided by Niagara Framework®, a software 
platform to manage and control diverse systems and devices regardless of manufacturer or protocol. Using 
these libraries allows faster onboarding, and their developers can focus more on developing applications ra-
ther than integration problems. Extracted data are usually transferred to the platform provider's cloud to be 
used in other applications. 

With emerging information needs such as energy predictions, optimum renewable energy usage and energy 
flexibility, data from external sources such as weather forecasts and predictions of prices in the Dutch utility 
market (day-ahead prices) are also linked to the data collection.  
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Figure 32 Data collection from different sources 
 
 

6.4 Data Storage 
Two data storage techniques are commonly used in smart building platforms. They are relational and non-
relational databases. Most BMS systems store time-series data in an SQL database. Some common SQL da-
tabases include Microsoft SQL Server, MySQL, Oracle Database, and PostgreSQL. NoSQL databases are pop-
ular in cloud-based solutions. Some examples are MongoDB, Cassandra and Cosmos. NoSQL databases over-
come the scalability issue and complexity and processing overhead in relational databases. These NoSQL 
databases are schemeless, meaning there are no tight structures and relationships defined.  

Other than those two prevalent techniques, there are emerging data storage solutions, namely time-series 
databases and graph databases. A time-series database (TSDB) is a database that is optimised for storing and 
serving data with a timestamp. Sensor data from IoT devices is a very good example of time series data where 
the datasets are composed of a timestamp and a value. InfluxDB, Prometheus and MongoDB Timeseries are 
some commonly used time-series databases. They provide significant performance improvements in terms of 
storage compared to general-purpose databases.  

With the addition of linked building data and ontologies, graph databases are emerging in the smart buildings 
field for storing and querying the RDF data in the database. Examples are GraphDB and RDF4J. Though storing 
time series is possible in the RDF graph, it has proven to be inefficient (Pauwels et al., 2015) and also not 
suitable for list-oriented analysis algorithms (Pauwels et al., 2022). However, it is valuable and useful to in-
clude the links to online identifiers where time-series data can be retrieved in the graph (Pauwels et al., 2022). 
This feature is available in the BRICK Schema where brick:time-series relationship relates a Brick point to the 
TimeseriesReference that indicates where and how the data for this point is stored (Timeseries - BrickSchema, 
n.d.).  
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An overview of the mentioned data storage solutions is given in Fig. 33. 

 

Figure 33 Databases for storing different data types 
 

6.5 Future needs and requirements for smart building platforms 
Using data-driven methods for optimising building performance – We observed that using MPC and Machine 
Learning techniques for forecasting energy demand and maximising energy flexibility are already initiated by 
the smart building platforms. Machine Learning will also be used for fault detection and diagnosis of HVAC 
systems in the future. While the available data from BMS are sufficient for improving performance, there is a 
lack of data related to the occupant. More data needs to be collected, including occupant feedback and indoor 
environmental parameters, to improve the indoor environment quality, predict occupancy, and use spaces 
optimally.  

Cloud-based services, privacy and data security - We observed that every solution provider we interviewed uses 
cloud services for data storage and analytics. This overcomes the limited storage and processing capabilities 
in existing BMS systems. Also, offering web-based access to remotely manage single or multiple buildings 
located at geographically different sites allows building managers and owners to view and benchmark the 
performance of each building in terms of energy usage and services and detect any unusual behaviour. While 
VPN, authentication and authorisation, and encryption provide a secure environment, an in-depth review of 
data policies and security measures is needed. This topic is discussed in Deliverable 4.01 in detail and is kept 
out of scope here. 

Metadata standardisation - Implementing standard semantic descriptions like Brick or Haystack is widely dis-
cussed within platform providers. Their decision on selecting which ontology, vocabulary or method to choose 
is determined by choosing a particular standard by building controllers' giants like Schneider, Honeywell, etc., 
and the continuous support provided by academia and industry. 
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Extending the information model to improve maintenance - Extending the information model to include a 
product's manufacturer's information, product datasheets, and link to the repair and maintenance team will 
improve workflow management by including maintenance information. The possibility of using BIM models to 
extend existing information models is being investigated. It is expected here that graph databases and ontol-
ogy-based RDF graphs provide useful avenues for further research and development in this direction. 

6.6 Problems and limitations to implementing smart building plat-
forms  

The investigated smart building solutions and their implementations in buildings often face several barriers 
and obstacles. The following section describes the main barriers identified according to platform providers. 

• Insufficient data - Newer applications are being introduced based on data-driven methods. Although 
available data is sufficient to improve energy performance, more data is required to improve indoor 
air quality since there is no sufficient building data available for indoor air quality improvement. 

• Data Quality - Data quality is low in the sense that there are missing and erroneous data that need to 
be cleaned up before performing data analytics. Sometimes, specific values do not have the correct 
magnitude with reporting or with the SCADA systems. Cloud Energy Optimizer and Simax mentioned 
that they use Machine Learning algorithms to check data accuracy when preparing data for algorithms.  

• Out of date data - Out of date documentation and drawings make it challenging to find out the current 
status of the building and its components. 

• Unstructured naming conventions – It is often difficult to find data points because of the ambiguous 
naming conventions used. Data is not self-descriptive, and this makes it tedious to identify the data 
type, its provenance, and intended usage for practitioners and data scientists. This demands an extra 
technical expert to give context to the data. Usually, a translation of available points to the desired 
format by the platform provider is required. Also, the technical know-how of how a building and its 
controllers operate is a prerequisite for the smart building application developer. In the current sce-
nario, understanding the building and its controllers is extremely hard for, for example, a data scientist. 
Therefore, methods should be developed such that the data is self-descriptive and can be understood 
by an inexperienced person. 

• Data discovery from legacy systems- Although BAS suppliers claim they deliver open systems, partici-
pants mentioned that they are not fully open. It is difficult to discover data points because they are 
hidden and transported in a scrambled manner. 

• Data ownership and security - In some cases, there is an ambiguity about the ownership of data, pri-
vacy and policy for sharing. This topic is discussed in detail under Deliverable 4.01 of this B4B project. 
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7 DEFINITION OF AN IDEAL BEST-CASE SCENARIO 
This last section lists a few key take-aways for data collection and integration plan from the literature and 
market study. 

7.1 Key take-aways for data collection 
The development of smart building applications (five use cases) relies heavily on data acquired from multiple 
systems. These systems are, 

• Building Management systems (BMS) 
• Energy Management systems (EMS) 
• Smart meters and IoT systems 
• Asset Management Systems 
• Building Information Models (BIM) 
• ICT systems and equipment 
• External services such as weather, grid 
• Post occupancy surveys  

And the data acquired from above sources can be categorised as, 

• Metered time series data from sensors  
• Data from external services 
• Occupant feedback 
• Domain expert knowledge 
• Contextual data/ metadata 

From Chapter 3 through Chapter 6, we discussed the smart building use cases, their data needs, requirements 
and also the limitations which hamper the development of applications and systems in support of such use 
cases. To summarise, developing and implementing smart building applications encounter following problems 
related to data. 

• Unavailability or partial availability of required data 
• Low quality data (accuracy, low resolution, timeliness, missing samples) 
• Unstructured data (naming conventions, metadata standards, data formats) 
• Limitations due to accessibility, privacy and ownership 

Therefore, a proper data collection method must resolve above problems and facilitate development of smart 
building applications. 

7.1.1. Improve data availability 
There can be several reasons behind the unavailability or partial availability of data. The main reason is the 
absence of a reliable data collection and management principle. Often, a lot of parameters are being meas-
ured, but they are not systematically collected. Therefore, it is important to collect and manage data in a reli-
able way. Data replication and backup can be used to ensure that the collected data is not lost. 

If a particular sensor is absent from the BMS, other methods like using IoT devices such as smartphones, 
watches, thermostats, and Indoor Air Quality (IAQ) sensors can be used to collect data from the building. These 
devices' ability to communicate using WiFi and Bluetooth provides ample opportunities for collecting data 
without intervening the available systems. However, it is also important to store and manage these data, be-
cause the IoT platforms usually do not maintain historical data for a longer period of time by default. 

Another economical way of collecting data is via virtual sensors (Ran et al., 2020; Reppa et al., 2014) when 
physical sensors are unavailable or costly to install. Virtual sensors derive an estimated value for a reading 
using the data available from other devices. Also, when in lack of historical data, data can be collected by 
simulating the required condition (such as faults) when a building is not in full use.  
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7.1.2. Improving data quality 
By using multiple redundant sensors, data from these redundant sensors can be used to compare and validate 
the readings. This gives an opportunity to correct any incorrect values. It is also important to calibrate the 
sensors properly to avoid erroneous readings. Details about calibration can be stored using a metadata stor-
age technique for verifying. Sometimes, datasets are available from buildings, but they are not in good quality 
due to uncalibrated sensors and meters, making that data useless.  

Data should be accurate, complete, up to date and consistent in order to provide valuable information. Since 
there can be many discrepancies in data, selection of a suitable data pre-processing technique should be 
made by the researcher or user according to their requirements. It is important to note that the techniques 
used for treating erroneous and missing values vary from one application or researcher to another, such as 
replacing with average, median, arbitrary value, the previous value, interpolation etc. 

7.1.3. Structuring the data 
Naming conventions differ significantly from building to building. Some naming conventions are documented 
in a mapping table, while others are not. Using a self-descriptive naming convention makes it easy to under-
stand the data and its meaning.  

To avoid the inconsistencies brought by naming conventions, data must be semantically annotated using a 
well-established standard. Using widely accepted standards to express syntax and semantics of data can make 
it easier to understand them, as well as integrate with other systems. Many such data models are available in 
the literature: e.g. Brick, Haystack, SSN, SOSA, iotschema. These existing data models should be used where 
possible. 

Data must be associated with its human- and machine-readable metadata. Making them machine-readable 
allows reasoning and validation. Since it is not practical to have all those information in the name itself, tags 
that follow a convention must be used. Also, relevant metadata should be stored in a database separately 
(Capehart & Brambley, n.d.). 

7.1.4. Accessing data adhering to privacy and ethics guidelines 
Collecting and using data from privacy invasive sensors requires additional security measures. Other than that, 
there are data policies that govern the sharing of data between parties. Accessibility and privacy-related issues 
are a very broad topic and are covered in detail in the already published Deliverable 4.01 Literature study and 
market study of existing regulations and approaches regarding privacy, ethics, and security, including GDPR 
constraints, available on www.brainsforbuildings.org. 

7.2 Data Integration reference architecture 
Data sources or systems communicate using different protocols and exchange data in different formats stand-
ards. Therefore, these data are often siloed, and they are not available via a single platform, meaning that 
there is little to no interaction between them. Therefore, it is difficult to produce useful information and insights 
based on them. However, we understood that more and more data-driven smart building applications seek 
data from multiple systems to make informed decisions about the energy, maintenance and occupant. These 
applications also need to write back their outputs to the building controllers. Therefore, developing methods 
to integrate those silos is important to allow users to access all the data they need, develop applications and 
write back into the building controllers.  

The ability to integrate systems from multiple vendors is a major requirement for building owners as well. 
Building owners are struggling to integrate all the data they receive from different vendors (assets, energy, 
maintenance), to understand the energy usage, maintenance, and overall performance of their buildings. Plat-
form provider companies also need to integrate different systems in their solutions such as BMS, BIM, external 
weather services, EV charging stations, and utility companies. But those systems use different data models 
and APIs, making it difficult to integrate them without dedicated coding.  

Above findings suggest that a reference architecture should have following features. 

1. Provide methods for data acquisition, storage, manage and backup to improve data availability 
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2. Provide standardisation to data originating from different systems using standard schemas and well 
recognised data models 

3. Provide access to historical and real time data for monitoring and controlling applications via APIs, 
reducing the complexity of accessing data to the user 

4. Support bidirectional communication between the smart building applications and building control-
lers. This requires connection with control APIs of building control systems. 

5. Provide scalable solutions that can accommodate growing number of data sources and users.  

6. Data ownership, security and privacy measures should be considered when sharing data among dif-
ferent applications and users. Other than building information, there are many other private and sen-
sitive information such as financial, personal records, occupant's information, etc. As more and more 
buildings use cloud solutions, these data become vulnerable to external attacks and unauthorised 
access. Many security and privacy measures have been developed to protect this information in dif-
ferent stages like transmission, storage, and processing. For more information, please refer to the 
Deliverable 4.1 Literature study and market study of existing regulations and approaches regarding 
privacy, ethics, and security, including GDPR constraints, available on www.brainsforbuildings.org. 

Considering these needs and requirements, the ideal best-case scenario for a data collection and integration 
plan for smart building applications can be drawn up as shown in Fig. 34. 

 

Figure 34 Ideal best-case scenario for data needs and requirements of smart building applications 
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